{"title":"全球云解析模型中的云微物理","authors":"T. Seiki, W. Roh, Masaki Satoh","doi":"10.1080/07055900.2022.2075310","DOIUrl":null,"url":null,"abstract":"ABSTRACT Global cloud resolving models (GCRMs) are a new type of general circulation model that explicitly calculates the growth of cloud systems with fine spatial resolutions and more than 10 GCRMs have been developed at present. This work reviews cloud microphysics schemes used in GCRMs with introductions to the recent progress and researches with GCRMs. Especially, research progress using a pioneer of GCRMs, Nonhydrostatic ICosahedral Atmospheric Model (NICAM), is focused. Since GCRMs deal with climatology and meteorology, it is a challenging issue to establish cloud microphysics schemes for GCRMs. A brief history of the development of cloud microphysics schemes and cloud-radiation coupling in NICAM is described. In addition, current progress in analytical techniques using satellite simulators is described. The combined use of multi-optical sensors enables us to constrain uncertain processes in cloud microphysics without artificial tuning. As a result, cloud microphysics schemes used in the NICAM naturally represent cloud systems, and hence, the radiative budget is well balanced with little optimization. Finally, a new satellite and a ground validation campaign are introduced for future work.","PeriodicalId":55434,"journal":{"name":"Atmosphere-Ocean","volume":"60 1","pages":"477 - 505"},"PeriodicalIF":1.6000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Cloud Microphysics in Global Cloud Resolving Models\",\"authors\":\"T. Seiki, W. Roh, Masaki Satoh\",\"doi\":\"10.1080/07055900.2022.2075310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Global cloud resolving models (GCRMs) are a new type of general circulation model that explicitly calculates the growth of cloud systems with fine spatial resolutions and more than 10 GCRMs have been developed at present. This work reviews cloud microphysics schemes used in GCRMs with introductions to the recent progress and researches with GCRMs. Especially, research progress using a pioneer of GCRMs, Nonhydrostatic ICosahedral Atmospheric Model (NICAM), is focused. Since GCRMs deal with climatology and meteorology, it is a challenging issue to establish cloud microphysics schemes for GCRMs. A brief history of the development of cloud microphysics schemes and cloud-radiation coupling in NICAM is described. In addition, current progress in analytical techniques using satellite simulators is described. The combined use of multi-optical sensors enables us to constrain uncertain processes in cloud microphysics without artificial tuning. As a result, cloud microphysics schemes used in the NICAM naturally represent cloud systems, and hence, the radiative budget is well balanced with little optimization. Finally, a new satellite and a ground validation campaign are introduced for future work.\",\"PeriodicalId\":55434,\"journal\":{\"name\":\"Atmosphere-Ocean\",\"volume\":\"60 1\",\"pages\":\"477 - 505\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere-Ocean\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/07055900.2022.2075310\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere-Ocean","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/07055900.2022.2075310","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Cloud Microphysics in Global Cloud Resolving Models
ABSTRACT Global cloud resolving models (GCRMs) are a new type of general circulation model that explicitly calculates the growth of cloud systems with fine spatial resolutions and more than 10 GCRMs have been developed at present. This work reviews cloud microphysics schemes used in GCRMs with introductions to the recent progress and researches with GCRMs. Especially, research progress using a pioneer of GCRMs, Nonhydrostatic ICosahedral Atmospheric Model (NICAM), is focused. Since GCRMs deal with climatology and meteorology, it is a challenging issue to establish cloud microphysics schemes for GCRMs. A brief history of the development of cloud microphysics schemes and cloud-radiation coupling in NICAM is described. In addition, current progress in analytical techniques using satellite simulators is described. The combined use of multi-optical sensors enables us to constrain uncertain processes in cloud microphysics without artificial tuning. As a result, cloud microphysics schemes used in the NICAM naturally represent cloud systems, and hence, the radiative budget is well balanced with little optimization. Finally, a new satellite and a ground validation campaign are introduced for future work.
期刊介绍:
Atmosphere-Ocean is the principal scientific journal of the Canadian Meteorological and Oceanographic Society (CMOS). It contains results of original research, survey articles, notes and comments on published papers in all fields of the atmospheric, oceanographic and hydrological sciences. Arctic, coastal and mid- to high-latitude regions are areas of particular interest. Applied or fundamental research contributions in English or French on the following topics are welcomed:
climate and climatology;
observation technology, remote sensing;
forecasting, modelling, numerical methods;
physics, dynamics, chemistry, biogeochemistry;
boundary layers, pollution, aerosols;
circulation, cloud physics, hydrology, air-sea interactions;
waves, ice, energy exchange and related environmental topics.