实用固态电池用硫化物/聚合物复合电解质离子输运现象的研究

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kyeong-Seok Oh, Ji Eun Lee, Yong-Hyeok Lee, Yi-Su Jeong, Imanuel Kristanto, Hong-Seok Min, Sang-Mo Kim, Young Jun Hong, Sang Kyu Kwak, Sang-Young Lee
{"title":"实用固态电池用硫化物/聚合物复合电解质离子输运现象的研究","authors":"Kyeong-Seok Oh,&nbsp;Ji Eun Lee,&nbsp;Yong-Hyeok Lee,&nbsp;Yi-Su Jeong,&nbsp;Imanuel Kristanto,&nbsp;Hong-Seok Min,&nbsp;Sang-Mo Kim,&nbsp;Young Jun Hong,&nbsp;Sang Kyu Kwak,&nbsp;Sang-Young Lee","doi":"10.1007/s40820-023-01139-w","DOIUrl":null,"url":null,"abstract":"<div><p>Despite the enormous interest in inorganic/polymer composite solid-state electrolytes (CSEs) for solid-state batteries (SSBs), the underlying ion transport phenomena in CSEs have not yet been elucidated. Here, we address this issue by formulating a mechanistic understanding of bi-percolating ion channels formation and ion conduction across inorganic-polymer electrolyte interfaces in CSEs. A model CSE is composed of argyrodite-type Li<sub>6</sub>PS<sub>5</sub>Cl (LPSCl) and gel polymer electrolyte (GPE, including Li<sup>+</sup>-glyme complex as an ion-conducting medium). The percolation threshold of the LPSCl phase in the CSE strongly depends on the elasticity of the GPE phase. Additionally, manipulating the solvation/desolvation behavior of the Li<sup>+</sup>-glyme complex in the GPE facilitates ion conduction across the LPSCl-GPE interface. The resulting scalable CSE (area = 8 × 6 (cm × cm), thickness ~ 40 μm) can be assembled with a high-mass-loading LiNi<sub>0.7</sub>Co<sub>0.15</sub>Mn<sub>0.15</sub>O<sub>2</sub> cathode (areal-mass-loading = 39 mg cm<sup>–2</sup>) and a graphite anode (negative (N)/positive (P) capacity ratio = 1.1) in order to fabricate an SSB full cell with bi-cell configuration. Under this constrained cell condition, the SSB full cell exhibits high volumetric energy density (480 Wh L<sub>cell</sub><sup>−1</sup>) and stable cyclability at 25 °C, far exceeding the values reported by previous CSE-based SSBs.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":31.6000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-023-01139-w.pdf","citationCount":"4","resultStr":"{\"title\":\"Elucidating Ion Transport Phenomena in Sulfide/Polymer Composite Electrolytes for Practical Solid-State Batteries\",\"authors\":\"Kyeong-Seok Oh,&nbsp;Ji Eun Lee,&nbsp;Yong-Hyeok Lee,&nbsp;Yi-Su Jeong,&nbsp;Imanuel Kristanto,&nbsp;Hong-Seok Min,&nbsp;Sang-Mo Kim,&nbsp;Young Jun Hong,&nbsp;Sang Kyu Kwak,&nbsp;Sang-Young Lee\",\"doi\":\"10.1007/s40820-023-01139-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite the enormous interest in inorganic/polymer composite solid-state electrolytes (CSEs) for solid-state batteries (SSBs), the underlying ion transport phenomena in CSEs have not yet been elucidated. Here, we address this issue by formulating a mechanistic understanding of bi-percolating ion channels formation and ion conduction across inorganic-polymer electrolyte interfaces in CSEs. A model CSE is composed of argyrodite-type Li<sub>6</sub>PS<sub>5</sub>Cl (LPSCl) and gel polymer electrolyte (GPE, including Li<sup>+</sup>-glyme complex as an ion-conducting medium). The percolation threshold of the LPSCl phase in the CSE strongly depends on the elasticity of the GPE phase. Additionally, manipulating the solvation/desolvation behavior of the Li<sup>+</sup>-glyme complex in the GPE facilitates ion conduction across the LPSCl-GPE interface. The resulting scalable CSE (area = 8 × 6 (cm × cm), thickness ~ 40 μm) can be assembled with a high-mass-loading LiNi<sub>0.7</sub>Co<sub>0.15</sub>Mn<sub>0.15</sub>O<sub>2</sub> cathode (areal-mass-loading = 39 mg cm<sup>–2</sup>) and a graphite anode (negative (N)/positive (P) capacity ratio = 1.1) in order to fabricate an SSB full cell with bi-cell configuration. Under this constrained cell condition, the SSB full cell exhibits high volumetric energy density (480 Wh L<sub>cell</sub><sup>−1</sup>) and stable cyclability at 25 °C, far exceeding the values reported by previous CSE-based SSBs.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>\",\"PeriodicalId\":48779,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-023-01139-w.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-023-01139-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-023-01139-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

尽管人们对用于固态电池(SSBs)的无机/聚合物复合固态电解质(CSEs)非常感兴趣,但CSEs中潜在的离子传输现象尚未得到阐明。在这里,我们通过对CSEs中无机-聚合物电解质界面上双渗透离子通道形成和离子传导的机制理解来解决这个问题。模型CSE由银矾型Li6PS5Cl (LPSCl)和凝胶聚合物电解质(GPE,包括Li+-glyme配合物作为离子导电介质)组成。CSE中LPSCl相的渗透阈值很大程度上取决于GPE相的弹性。此外,控制GPE中Li+-glyme配合物的溶剂化/脱溶行为有助于离子在LPSCl-GPE界面上的传导。利用高质量负载的LiNi0.7Co0.15Mn0.15O2阴极(面积-质量负载= 39 mg cm - 2)和石墨阳极(负(N)/正(P)容量比= 1.1),可以组装出面积= 8 × 6 (cm × cm),厚度约40 μm的可扩展CSE,从而制备出双电池结构的SSB全电池。在这种受限的电池条件下,SSB全电池表现出高的体积能量密度(480 Wh Lcell−1)和25°C下稳定的可循环性,远远超过以前基于cse的SSB报告的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elucidating Ion Transport Phenomena in Sulfide/Polymer Composite Electrolytes for Practical Solid-State Batteries

Despite the enormous interest in inorganic/polymer composite solid-state electrolytes (CSEs) for solid-state batteries (SSBs), the underlying ion transport phenomena in CSEs have not yet been elucidated. Here, we address this issue by formulating a mechanistic understanding of bi-percolating ion channels formation and ion conduction across inorganic-polymer electrolyte interfaces in CSEs. A model CSE is composed of argyrodite-type Li6PS5Cl (LPSCl) and gel polymer electrolyte (GPE, including Li+-glyme complex as an ion-conducting medium). The percolation threshold of the LPSCl phase in the CSE strongly depends on the elasticity of the GPE phase. Additionally, manipulating the solvation/desolvation behavior of the Li+-glyme complex in the GPE facilitates ion conduction across the LPSCl-GPE interface. The resulting scalable CSE (area = 8 × 6 (cm × cm), thickness ~ 40 μm) can be assembled with a high-mass-loading LiNi0.7Co0.15Mn0.15O2 cathode (areal-mass-loading = 39 mg cm–2) and a graphite anode (negative (N)/positive (P) capacity ratio = 1.1) in order to fabricate an SSB full cell with bi-cell configuration. Under this constrained cell condition, the SSB full cell exhibits high volumetric energy density (480 Wh Lcell−1) and stable cyclability at 25 °C, far exceeding the values reported by previous CSE-based SSBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
42.40
自引率
4.90%
发文量
715
审稿时长
13 weeks
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary and open-access journal that focus on science, experiments, engineering, technologies and applications of nano- or microscale structure and system in physics, chemistry, biology, material science, pharmacy and their expanding interfaces with at least one dimension ranging from a few sub-nanometers to a few hundreds of micrometers. Especially, emphasize the bottom-up approach in the length scale from nano to micro since the key for nanotechnology to reach industrial applications is to assemble, to modify, and to control nanostructure in micro scale. The aim is to provide a publishing platform crossing the boundaries, from nano to micro, and from science to technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信