Justin M. London, Birgitta Burger, Marc R. Thompson, Molly Hildreth, J. Wilson, Nick Schally, P. Toiviainen
{"title":"摩城、迪斯科和击鼓","authors":"Justin M. London, Birgitta Burger, Marc R. Thompson, Molly Hildreth, J. Wilson, Nick Schally, P. Toiviainen","doi":"10.1525/mp.2019.37.1.26","DOIUrl":null,"url":null,"abstract":"In a study of tempo perception, London, Burger, Thompson, and Toiviainen (2016) presented participants with digitally ‘‘tempo-shifted’’ R&B songs (i.e., sped up or slowed down without otherwise altering their pitch or timbre). They found that while participants’ relative tempo judgments of original versus altered versions were correct, they no longer corresponded to the beat rate of each stimulus. Here we report on three experiments that further probe the relation(s) between beat rate, tempo-shifting, beat salience, melodic structure, and perceived tempo. Experiment 1 is a replication of London et al. (2016) using the original stimuli. Experiment 2 replaces the Motown stimuli with disco music, which has higher beat salience. Experiment 3 uses looped drum patterns, eliminating pitch and other cues from the stimuli and maximizing beat salience. The effect of London et al. (2016) was replicated in Experiment 1, present to a lesser degree in Experiment 2, and absent in Experiment 3. Experiments 2 and 3 also found that participants were able to make tempo judgments in accordance with BPM rates for stimuli that were not tempo-shifted. The roles of beat salience, melodic structure, and memory for tempo are discussed, and the TAE as an example of perceptual sharpening is considered.","PeriodicalId":47786,"journal":{"name":"Music Perception","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Motown, Disco, and Drumming\",\"authors\":\"Justin M. London, Birgitta Burger, Marc R. Thompson, Molly Hildreth, J. Wilson, Nick Schally, P. Toiviainen\",\"doi\":\"10.1525/mp.2019.37.1.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a study of tempo perception, London, Burger, Thompson, and Toiviainen (2016) presented participants with digitally ‘‘tempo-shifted’’ R&B songs (i.e., sped up or slowed down without otherwise altering their pitch or timbre). They found that while participants’ relative tempo judgments of original versus altered versions were correct, they no longer corresponded to the beat rate of each stimulus. Here we report on three experiments that further probe the relation(s) between beat rate, tempo-shifting, beat salience, melodic structure, and perceived tempo. Experiment 1 is a replication of London et al. (2016) using the original stimuli. Experiment 2 replaces the Motown stimuli with disco music, which has higher beat salience. Experiment 3 uses looped drum patterns, eliminating pitch and other cues from the stimuli and maximizing beat salience. The effect of London et al. (2016) was replicated in Experiment 1, present to a lesser degree in Experiment 2, and absent in Experiment 3. Experiments 2 and 3 also found that participants were able to make tempo judgments in accordance with BPM rates for stimuli that were not tempo-shifted. The roles of beat salience, melodic structure, and memory for tempo are discussed, and the TAE as an example of perceptual sharpening is considered.\",\"PeriodicalId\":47786,\"journal\":{\"name\":\"Music Perception\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Music Perception\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1525/mp.2019.37.1.26\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MUSIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Music Perception","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1525/mp.2019.37.1.26","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MUSIC","Score":null,"Total":0}
In a study of tempo perception, London, Burger, Thompson, and Toiviainen (2016) presented participants with digitally ‘‘tempo-shifted’’ R&B songs (i.e., sped up or slowed down without otherwise altering their pitch or timbre). They found that while participants’ relative tempo judgments of original versus altered versions were correct, they no longer corresponded to the beat rate of each stimulus. Here we report on three experiments that further probe the relation(s) between beat rate, tempo-shifting, beat salience, melodic structure, and perceived tempo. Experiment 1 is a replication of London et al. (2016) using the original stimuli. Experiment 2 replaces the Motown stimuli with disco music, which has higher beat salience. Experiment 3 uses looped drum patterns, eliminating pitch and other cues from the stimuli and maximizing beat salience. The effect of London et al. (2016) was replicated in Experiment 1, present to a lesser degree in Experiment 2, and absent in Experiment 3. Experiments 2 and 3 also found that participants were able to make tempo judgments in accordance with BPM rates for stimuli that were not tempo-shifted. The roles of beat salience, melodic structure, and memory for tempo are discussed, and the TAE as an example of perceptual sharpening is considered.
期刊介绍:
Music Perception charts the ongoing scholarly discussion and study of musical phenomena. Publishing original empirical and theoretical papers, methodological articles and critical reviews from renowned scientists and musicians, Music Perception is a repository of insightful research. The broad range of disciplines covered in the journal includes: •Psychology •Psychophysics •Linguistics •Neurology •Neurophysiology •Artificial intelligence •Computer technology •Physical and architectural acoustics •Music theory