{"title":"热储能用Ni-Cr-Co和Ni-Cr-Mo合金熔盐腐蚀行为研究","authors":"M. Prem kumar, M. Manikandan","doi":"10.1080/1478422X.2022.2140247","DOIUrl":null,"url":null,"abstract":"ABSTRACT This research mainly focuses on selecting phase change materials (PCM) and container materials for next-generation concentrated solar power plants (CSP). The present study investigates the hot corrosion behaviour of Inconel 617 and 625 in Na2SO4 + 45 wt-% diatomite PCM environment at 800°C for 40, 80 and 120 h. Oxide scales developed on the alloy surfaces were examined by Scanning electron microscope (SEM) and X-ray diffraction (XRD) to study morphology and oxide phases. The result indicates that Inconel 617 and 625 weight changes were 1.239 and 0.925 mg cm−2 at 800°C for a maximum duration of 120 h. The dense oxide of Cr2O3 is formed on alloys 617 and 625, which gives better oxidation resistance in a PCM environment. Moreover, the Inconel 625 shows lesser weight gain compared to Inconel 617 due to the presence of higher wt-% of Cr in the alloy and Nb formation oxides reducing corrosion species diffusion rate.","PeriodicalId":10711,"journal":{"name":"Corrosion Engineering, Science and Technology","volume":"58 1","pages":"49 - 60"},"PeriodicalIF":1.5000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of corrosion behaviour on Ni–Cr–Co and Ni–Cr–Mo alloys exposed to molten salt for thermal energy storage applications\",\"authors\":\"M. Prem kumar, M. Manikandan\",\"doi\":\"10.1080/1478422X.2022.2140247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This research mainly focuses on selecting phase change materials (PCM) and container materials for next-generation concentrated solar power plants (CSP). The present study investigates the hot corrosion behaviour of Inconel 617 and 625 in Na2SO4 + 45 wt-% diatomite PCM environment at 800°C for 40, 80 and 120 h. Oxide scales developed on the alloy surfaces were examined by Scanning electron microscope (SEM) and X-ray diffraction (XRD) to study morphology and oxide phases. The result indicates that Inconel 617 and 625 weight changes were 1.239 and 0.925 mg cm−2 at 800°C for a maximum duration of 120 h. The dense oxide of Cr2O3 is formed on alloys 617 and 625, which gives better oxidation resistance in a PCM environment. Moreover, the Inconel 625 shows lesser weight gain compared to Inconel 617 due to the presence of higher wt-% of Cr in the alloy and Nb formation oxides reducing corrosion species diffusion rate.\",\"PeriodicalId\":10711,\"journal\":{\"name\":\"Corrosion Engineering, Science and Technology\",\"volume\":\"58 1\",\"pages\":\"49 - 60\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Engineering, Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/1478422X.2022.2140247\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Engineering, Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/1478422X.2022.2140247","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of corrosion behaviour on Ni–Cr–Co and Ni–Cr–Mo alloys exposed to molten salt for thermal energy storage applications
ABSTRACT This research mainly focuses on selecting phase change materials (PCM) and container materials for next-generation concentrated solar power plants (CSP). The present study investigates the hot corrosion behaviour of Inconel 617 and 625 in Na2SO4 + 45 wt-% diatomite PCM environment at 800°C for 40, 80 and 120 h. Oxide scales developed on the alloy surfaces were examined by Scanning electron microscope (SEM) and X-ray diffraction (XRD) to study morphology and oxide phases. The result indicates that Inconel 617 and 625 weight changes were 1.239 and 0.925 mg cm−2 at 800°C for a maximum duration of 120 h. The dense oxide of Cr2O3 is formed on alloys 617 and 625, which gives better oxidation resistance in a PCM environment. Moreover, the Inconel 625 shows lesser weight gain compared to Inconel 617 due to the presence of higher wt-% of Cr in the alloy and Nb formation oxides reducing corrosion species diffusion rate.
期刊介绍:
Corrosion Engineering, Science and Technology provides broad international coverage of research and practice in corrosion processes and corrosion control. Peer-reviewed contributions address all aspects of corrosion engineering and corrosion science; there is strong emphasis on effective design and materials selection to combat corrosion and the journal carries failure case studies to further knowledge in these areas.