Mengshuang Yin, Aoxiang Zhang, Xien Sang, Yuan Xu, Fang Wang, Juin J. Lion, Yuhuai Liu
{"title":"基于第四系AlInGaN末量子势垒的深紫外激光二极管","authors":"Mengshuang Yin, Aoxiang Zhang, Xien Sang, Yuan Xu, Fang Wang, Juin J. Lion, Yuhuai Liu","doi":"10.1007/s10946-023-10139-5","DOIUrl":null,"url":null,"abstract":"<div><p>We propose the quaternary AlInGaN last quantum barrier (LQB) structure to improve the performance of deep-ultraviolet (DUV) laser diodes (LDs). Here, we investigate three LQB structures – Al<sub>0<i>.</i>63</sub>In<sub>0<i>.</i>03</sub>Ga<sub>0<i>.</i>34</sub>N LQB, Al<sub>0<i>.</i>65</sub>In<sub>0<i>.</i>03</sub>Ga<sub>0<i>.</i>32</sub>N LQ band, and Al<sub>0<i>.</i>68</sub>In<sub>0<i>.</i>03</sub>Ga<sub>0<i>.</i>29</sub>N LQB. We find that the Al<sub>0<i>.</i>68</sub>In<sub>0<i>.</i>03</sub>Ga<sub>0<i>.</i>29</sub>N LQB structure significantly reduces the electron leakage in the <i>p</i>-region, improves the carrier injection efficiency in the active region, and increases the stimulated radiation recombination rate of the DUV LDs. The simulation results indicate that the threshold current and threshold voltage decrease from 50.93 mA and 4.70 V for the Al<sub>0<i>.</i>63</sub>In<sub>0<i>.</i>03</sub>Ga<sub>0<i>.</i>34</sub>N LQB structure to 42.47 mA and 4.63 V for the Al<sub>0<i>.</i>68</sub>In<sub>0<i>.</i>03</sub>Ga<sub>0<i>.</i>29</sub>N LQB structure, respectively. At an injection current of 100 mA, the slope efficiency increases to 1.12 W/A. Compared with the conventional ternary AlGaN LQB structure, the quaternary AlInGaN LQB structure significantly improves the performance of the DUV LDs, which is crucial for the development of the DUV LDs.</p></div>","PeriodicalId":663,"journal":{"name":"Journal of Russian Laser Research","volume":"44 3","pages":"339 - 347"},"PeriodicalIF":0.7000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AlGaN-Based Deep-Ultraviolet Laser Diodes with Quaternary AlInGaN Last Quantum Barrier\",\"authors\":\"Mengshuang Yin, Aoxiang Zhang, Xien Sang, Yuan Xu, Fang Wang, Juin J. Lion, Yuhuai Liu\",\"doi\":\"10.1007/s10946-023-10139-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose the quaternary AlInGaN last quantum barrier (LQB) structure to improve the performance of deep-ultraviolet (DUV) laser diodes (LDs). Here, we investigate three LQB structures – Al<sub>0<i>.</i>63</sub>In<sub>0<i>.</i>03</sub>Ga<sub>0<i>.</i>34</sub>N LQB, Al<sub>0<i>.</i>65</sub>In<sub>0<i>.</i>03</sub>Ga<sub>0<i>.</i>32</sub>N LQ band, and Al<sub>0<i>.</i>68</sub>In<sub>0<i>.</i>03</sub>Ga<sub>0<i>.</i>29</sub>N LQB. We find that the Al<sub>0<i>.</i>68</sub>In<sub>0<i>.</i>03</sub>Ga<sub>0<i>.</i>29</sub>N LQB structure significantly reduces the electron leakage in the <i>p</i>-region, improves the carrier injection efficiency in the active region, and increases the stimulated radiation recombination rate of the DUV LDs. The simulation results indicate that the threshold current and threshold voltage decrease from 50.93 mA and 4.70 V for the Al<sub>0<i>.</i>63</sub>In<sub>0<i>.</i>03</sub>Ga<sub>0<i>.</i>34</sub>N LQB structure to 42.47 mA and 4.63 V for the Al<sub>0<i>.</i>68</sub>In<sub>0<i>.</i>03</sub>Ga<sub>0<i>.</i>29</sub>N LQB structure, respectively. At an injection current of 100 mA, the slope efficiency increases to 1.12 W/A. Compared with the conventional ternary AlGaN LQB structure, the quaternary AlInGaN LQB structure significantly improves the performance of the DUV LDs, which is crucial for the development of the DUV LDs.</p></div>\",\"PeriodicalId\":663,\"journal\":{\"name\":\"Journal of Russian Laser Research\",\"volume\":\"44 3\",\"pages\":\"339 - 347\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Russian Laser Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10946-023-10139-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Russian Laser Research","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10946-023-10139-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
AlGaN-Based Deep-Ultraviolet Laser Diodes with Quaternary AlInGaN Last Quantum Barrier
We propose the quaternary AlInGaN last quantum barrier (LQB) structure to improve the performance of deep-ultraviolet (DUV) laser diodes (LDs). Here, we investigate three LQB structures – Al0.63In0.03Ga0.34N LQB, Al0.65In0.03Ga0.32N LQ band, and Al0.68In0.03Ga0.29N LQB. We find that the Al0.68In0.03Ga0.29N LQB structure significantly reduces the electron leakage in the p-region, improves the carrier injection efficiency in the active region, and increases the stimulated radiation recombination rate of the DUV LDs. The simulation results indicate that the threshold current and threshold voltage decrease from 50.93 mA and 4.70 V for the Al0.63In0.03Ga0.34N LQB structure to 42.47 mA and 4.63 V for the Al0.68In0.03Ga0.29N LQB structure, respectively. At an injection current of 100 mA, the slope efficiency increases to 1.12 W/A. Compared with the conventional ternary AlGaN LQB structure, the quaternary AlInGaN LQB structure significantly improves the performance of the DUV LDs, which is crucial for the development of the DUV LDs.
期刊介绍:
The journal publishes original, high-quality articles that follow new developments in all areas of laser research, including:
laser physics;
laser interaction with matter;
properties of laser beams;
laser thermonuclear fusion;
laser chemistry;
quantum and nonlinear optics;
optoelectronics;
solid state, gas, liquid, chemical, and semiconductor lasers.