应用深度学习预测中小企业创新:知识管理风险的黑暗面

IF 2.7 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE
Ronnié Figueiredo, João J. M. Ferreira, M. Emilia, O. Dorokhov
{"title":"应用深度学习预测中小企业创新:知识管理风险的黑暗面","authors":"Ronnié Figueiredo, João J. M. Ferreira, M. Emilia, O. Dorokhov","doi":"10.1108/vjikms-09-2022-0294","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis study aims to predict the dark side of knowledge management risk to innovation in Portuguese small and medium enterprises (SMEs). It examines the spinner innovation model factors of knowledge creation, knowledge transfer, private knowledge, public knowledge and innovation in uncertain environments.\n\n\nDesign/methodology/approach\nThe authors developed a conceptual model to support the analysis. The survey data stemmed from a sample of 208 Portuguese SMEs in Portugal. The authors analyzed the primary data from the ad hoc survey using the data mining (deep learning) technique.\n\n\nFindings\nThe research sets out and tests factors relevant to understanding how to predict innovation in uncertain business environments. This study identifies four factors fostering innovation in SMEs: knowledge creation, knowledge transfer, public knowledge management and private knowledge management. Knowledge creation showed the best return and presented the closest relationship with innovation.\n\n\nOriginality/value\nInnovation models generally measure the relationships between variables and their impacts on the economy (economic and regional development). Predictive models are considered in the literature as a gap to be filled, especially in an uncertain environment in the SME context.\n","PeriodicalId":45590,"journal":{"name":"VINE Journal of Information and Knowledge Management Systems","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Applying deep learning to predict innovations in small and medium enterprises (SMEs): the dark side of knowledge management risk\",\"authors\":\"Ronnié Figueiredo, João J. M. Ferreira, M. Emilia, O. Dorokhov\",\"doi\":\"10.1108/vjikms-09-2022-0294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis study aims to predict the dark side of knowledge management risk to innovation in Portuguese small and medium enterprises (SMEs). It examines the spinner innovation model factors of knowledge creation, knowledge transfer, private knowledge, public knowledge and innovation in uncertain environments.\\n\\n\\nDesign/methodology/approach\\nThe authors developed a conceptual model to support the analysis. The survey data stemmed from a sample of 208 Portuguese SMEs in Portugal. The authors analyzed the primary data from the ad hoc survey using the data mining (deep learning) technique.\\n\\n\\nFindings\\nThe research sets out and tests factors relevant to understanding how to predict innovation in uncertain business environments. This study identifies four factors fostering innovation in SMEs: knowledge creation, knowledge transfer, public knowledge management and private knowledge management. Knowledge creation showed the best return and presented the closest relationship with innovation.\\n\\n\\nOriginality/value\\nInnovation models generally measure the relationships between variables and their impacts on the economy (economic and regional development). Predictive models are considered in the literature as a gap to be filled, especially in an uncertain environment in the SME context.\\n\",\"PeriodicalId\":45590,\"journal\":{\"name\":\"VINE Journal of Information and Knowledge Management Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VINE Journal of Information and Knowledge Management Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/vjikms-09-2022-0294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VINE Journal of Information and Knowledge Management Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/vjikms-09-2022-0294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

目的本研究旨在预测知识管理风险对葡萄牙中小企业创新的阴暗面。研究了不确定环境下的知识创造、知识转移、私有知识、公共知识和创新的旋转创新模型因素。设计/方法/方法作者开发了一个概念模型来支持分析。该调查数据来自对葡萄牙境内的208家葡萄牙中小企业的抽样调查。作者使用数据挖掘(深度学习)技术分析了来自临时调查的原始数据。研究结果该研究列出并测试了与理解如何在不确定的商业环境中预测创新相关的因素。本研究确定了促进中小企业创新的四个因素:知识创造、知识转移、公共知识管理和私人知识管理。知识创造的回报最好,与创新的关系最为密切。原创性/价值创新模型通常衡量变量之间的关系及其对经济(经济和区域发展)的影响。在文献中,预测模型被认为是一个有待填补的空白,特别是在中小企业背景下的不确定环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying deep learning to predict innovations in small and medium enterprises (SMEs): the dark side of knowledge management risk
Purpose This study aims to predict the dark side of knowledge management risk to innovation in Portuguese small and medium enterprises (SMEs). It examines the spinner innovation model factors of knowledge creation, knowledge transfer, private knowledge, public knowledge and innovation in uncertain environments. Design/methodology/approach The authors developed a conceptual model to support the analysis. The survey data stemmed from a sample of 208 Portuguese SMEs in Portugal. The authors analyzed the primary data from the ad hoc survey using the data mining (deep learning) technique. Findings The research sets out and tests factors relevant to understanding how to predict innovation in uncertain business environments. This study identifies four factors fostering innovation in SMEs: knowledge creation, knowledge transfer, public knowledge management and private knowledge management. Knowledge creation showed the best return and presented the closest relationship with innovation. Originality/value Innovation models generally measure the relationships between variables and their impacts on the economy (economic and regional development). Predictive models are considered in the literature as a gap to be filled, especially in an uncertain environment in the SME context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
VINE Journal of Information and Knowledge Management Systems
VINE Journal of Information and Knowledge Management Systems INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
6.40
自引率
21.40%
发文量
68
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信