火箭直线运动的最佳控制

M. Aliane, N. Moussouni, Mohand Bentobache
{"title":"火箭直线运动的最佳控制","authors":"M. Aliane, N. Moussouni, Mohand Bentobache","doi":"10.19139/soic-2310-5070-741","DOIUrl":null,"url":null,"abstract":"In this work, we have modelled the problem of maximizing the velocity of a rocket moving with a rectilinear motion by a linear optimal control problem, where the control represents the action of the pilot on the rocket. In order to solve the obtained model, we applied both analytical and numerical methods. The analytical solution is calculated using the Pontryagin maximum principle while the approximate solution of the problem is found using the shooting method as well as two techniques of discretization: the technique using the Cauchy formula and the one using the Euler formula. In order to compare the different methods, we developed an implementation with MATLAB and presented some simulation results.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"8 1","pages":"281-295"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimal control of a rectilinear motion of a rocket\",\"authors\":\"M. Aliane, N. Moussouni, Mohand Bentobache\",\"doi\":\"10.19139/soic-2310-5070-741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we have modelled the problem of maximizing the velocity of a rocket moving with a rectilinear motion by a linear optimal control problem, where the control represents the action of the pilot on the rocket. In order to solve the obtained model, we applied both analytical and numerical methods. The analytical solution is calculated using the Pontryagin maximum principle while the approximate solution of the problem is found using the shooting method as well as two techniques of discretization: the technique using the Cauchy formula and the one using the Euler formula. In order to compare the different methods, we developed an implementation with MATLAB and presented some simulation results.\",\"PeriodicalId\":93376,\"journal\":{\"name\":\"Statistics, optimization & information computing\",\"volume\":\"8 1\",\"pages\":\"281-295\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, optimization & information computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,我们通过线性最优控制问题建模了以直线运动的火箭速度最大化的问题,其中控制表示飞行员对火箭的动作。为了求解得到的模型,我们采用了解析法和数值法。用庞特里亚金极大值原理计算了问题的解析解,用射击法以及柯西公式和欧拉公式两种离散化技术求出了问题的近似解。为了比较不同的方法,我们用MATLAB开发了一个实现,并给出了一些仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal control of a rectilinear motion of a rocket
In this work, we have modelled the problem of maximizing the velocity of a rocket moving with a rectilinear motion by a linear optimal control problem, where the control represents the action of the pilot on the rocket. In order to solve the obtained model, we applied both analytical and numerical methods. The analytical solution is calculated using the Pontryagin maximum principle while the approximate solution of the problem is found using the shooting method as well as two techniques of discretization: the technique using the Cauchy formula and the one using the Euler formula. In order to compare the different methods, we developed an implementation with MATLAB and presented some simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信