{"title":"统计学中蒙特卡罗研究偏差时一类错误率的重要性","authors":"Michael R. Harwell","doi":"10.22237/jmasm/1556670360","DOIUrl":null,"url":null,"abstract":"Two common outcomes of Monte Carlo studies in statistics are bias and Type I error rate. Several versions of bias statistics exist but all employ arbitrary cutoffs for deciding when bias is ignorable or non-ignorable. This article argues Type I error rates should be used when assessing bias.","PeriodicalId":47201,"journal":{"name":"Journal of Modern Applied Statistical Methods","volume":"18 1","pages":"2-11"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Importance of Type I Error Rates When Studying Bias in Monte Carlo Studies in Statistics\",\"authors\":\"Michael R. Harwell\",\"doi\":\"10.22237/jmasm/1556670360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two common outcomes of Monte Carlo studies in statistics are bias and Type I error rate. Several versions of bias statistics exist but all employ arbitrary cutoffs for deciding when bias is ignorable or non-ignorable. This article argues Type I error rates should be used when assessing bias.\",\"PeriodicalId\":47201,\"journal\":{\"name\":\"Journal of Modern Applied Statistical Methods\",\"volume\":\"18 1\",\"pages\":\"2-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Applied Statistical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22237/jmasm/1556670360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Applied Statistical Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22237/jmasm/1556670360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
The Importance of Type I Error Rates When Studying Bias in Monte Carlo Studies in Statistics
Two common outcomes of Monte Carlo studies in statistics are bias and Type I error rate. Several versions of bias statistics exist but all employ arbitrary cutoffs for deciding when bias is ignorable or non-ignorable. This article argues Type I error rates should be used when assessing bias.
期刊介绍:
The Journal of Modern Applied Statistical Methods is an independent, peer-reviewed, open access journal designed to provide an outlet for the scholarly works of applied nonparametric or parametric statisticians, data analysts, researchers, classical or modern psychometricians, and quantitative or qualitative methodologists/evaluators.