{"title":"丛枝菌根真菌和常见的菌根网络通过形态、生理和生产特性以及土壤质量使植物受益","authors":"M. A. Busso, Marina Busso","doi":"10.30550/j.lil/2022.59.2/2022.12.02","DOIUrl":null,"url":null,"abstract":"The extraradical hyphae of arbuscular mycorrhizal fungi (AMF) of one plant root system forage for the soil nutrients and induce the root colonization of the nearby plants, which leads to the formation of common mycorrhizal networks (CMNs) that interconnect roots. Inoculation with AMF can increase the root length, surface area and volume of seedlings in nutrient-limited karstic soils. Mycorrhizal symbioses can secrete glomalin to help promoting soil aggregates for water and nutrients storage, through an extended hyphae to absorb water and nutrients from long distances. AMF can boost rhizosphere soil enzyme activities, and may help to drive carbon sequestration. AMF also improve plant growth by advancing soil quality through influencing its structure and texture. As a result, AMF and CMNs benefit plants through improving soil quality and enhancing morphological (e.g., hyphal length, tillering, number of stolons per individual), physiological (e.g., water use efficiency) and productive (e.g., fresh and dry shoot and root weights) traits.","PeriodicalId":33272,"journal":{"name":"Lilloa","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Arbuscular mycorrhizal fungi and common mycorrhizal networks benefit plants through morphological, physiological and productive traits and soil quality\",\"authors\":\"M. A. Busso, Marina Busso\",\"doi\":\"10.30550/j.lil/2022.59.2/2022.12.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The extraradical hyphae of arbuscular mycorrhizal fungi (AMF) of one plant root system forage for the soil nutrients and induce the root colonization of the nearby plants, which leads to the formation of common mycorrhizal networks (CMNs) that interconnect roots. Inoculation with AMF can increase the root length, surface area and volume of seedlings in nutrient-limited karstic soils. Mycorrhizal symbioses can secrete glomalin to help promoting soil aggregates for water and nutrients storage, through an extended hyphae to absorb water and nutrients from long distances. AMF can boost rhizosphere soil enzyme activities, and may help to drive carbon sequestration. AMF also improve plant growth by advancing soil quality through influencing its structure and texture. As a result, AMF and CMNs benefit plants through improving soil quality and enhancing morphological (e.g., hyphal length, tillering, number of stolons per individual), physiological (e.g., water use efficiency) and productive (e.g., fresh and dry shoot and root weights) traits.\",\"PeriodicalId\":33272,\"journal\":{\"name\":\"Lilloa\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lilloa\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30550/j.lil/2022.59.2/2022.12.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lilloa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30550/j.lil/2022.59.2/2022.12.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Arbuscular mycorrhizal fungi and common mycorrhizal networks benefit plants through morphological, physiological and productive traits and soil quality
The extraradical hyphae of arbuscular mycorrhizal fungi (AMF) of one plant root system forage for the soil nutrients and induce the root colonization of the nearby plants, which leads to the formation of common mycorrhizal networks (CMNs) that interconnect roots. Inoculation with AMF can increase the root length, surface area and volume of seedlings in nutrient-limited karstic soils. Mycorrhizal symbioses can secrete glomalin to help promoting soil aggregates for water and nutrients storage, through an extended hyphae to absorb water and nutrients from long distances. AMF can boost rhizosphere soil enzyme activities, and may help to drive carbon sequestration. AMF also improve plant growth by advancing soil quality through influencing its structure and texture. As a result, AMF and CMNs benefit plants through improving soil quality and enhancing morphological (e.g., hyphal length, tillering, number of stolons per individual), physiological (e.g., water use efficiency) and productive (e.g., fresh and dry shoot and root weights) traits.