{"title":"正态分布中均值函数的纯序列最小风险点估计的一般理论","authors":"N. Mukhopadhyay, Zhe Wang","doi":"10.1080/07474946.2019.1686885","DOIUrl":null,"url":null,"abstract":"Abstract A purely sequential minimum risk point estimation (MRPE) methodology with associated stopping time N is designed to come up with a useful estimation strategy. We work under an appropriately formulated weighted squared error loss (SEL) due to estimation of a function of μ, with plus linear cost of sampling from a population having both parameters unknown. A series of important first-order and second-order asymptotic (as c, the cost per unit sample, ) results is laid out including the first-order and second-order efficiency properties. Then, accurate sequential risk calculations are launched, which are then followed by two main results: (i) Theorem 4.1 shows an asymptotic risk efficiency property, and (ii) Theorem 5.1 shows an asymptotic second-order regret expansion associated with the proposed purely sequential MRPE strategy assuming suitable conditions on g(.). We also provide a bias-corrected version of the terminal estimator, We follow up with a number of interesting illustrations where Theorems 4.1–5.1 are readily exploited to conclude an asymptotic risk efficiency property and second-order regret expansion, respectively. A number of other interesting illustrations are highlighted where it is possible to verify the conclusions from Theorems 4.1–5.1 more directly with less stringent assumptions on the pilot sample size.","PeriodicalId":48879,"journal":{"name":"Sequential Analysis-Design Methods and Applications","volume":"38 1","pages":"480 - 502"},"PeriodicalIF":0.6000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07474946.2019.1686885","citationCount":"7","resultStr":"{\"title\":\"A general theory of purely sequential minimum risk point estimation (MRPE) of a function of the mean in a normal distribution\",\"authors\":\"N. Mukhopadhyay, Zhe Wang\",\"doi\":\"10.1080/07474946.2019.1686885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A purely sequential minimum risk point estimation (MRPE) methodology with associated stopping time N is designed to come up with a useful estimation strategy. We work under an appropriately formulated weighted squared error loss (SEL) due to estimation of a function of μ, with plus linear cost of sampling from a population having both parameters unknown. A series of important first-order and second-order asymptotic (as c, the cost per unit sample, ) results is laid out including the first-order and second-order efficiency properties. Then, accurate sequential risk calculations are launched, which are then followed by two main results: (i) Theorem 4.1 shows an asymptotic risk efficiency property, and (ii) Theorem 5.1 shows an asymptotic second-order regret expansion associated with the proposed purely sequential MRPE strategy assuming suitable conditions on g(.). We also provide a bias-corrected version of the terminal estimator, We follow up with a number of interesting illustrations where Theorems 4.1–5.1 are readily exploited to conclude an asymptotic risk efficiency property and second-order regret expansion, respectively. A number of other interesting illustrations are highlighted where it is possible to verify the conclusions from Theorems 4.1–5.1 more directly with less stringent assumptions on the pilot sample size.\",\"PeriodicalId\":48879,\"journal\":{\"name\":\"Sequential Analysis-Design Methods and Applications\",\"volume\":\"38 1\",\"pages\":\"480 - 502\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07474946.2019.1686885\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sequential Analysis-Design Methods and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07474946.2019.1686885\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sequential Analysis-Design Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07474946.2019.1686885","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A general theory of purely sequential minimum risk point estimation (MRPE) of a function of the mean in a normal distribution
Abstract A purely sequential minimum risk point estimation (MRPE) methodology with associated stopping time N is designed to come up with a useful estimation strategy. We work under an appropriately formulated weighted squared error loss (SEL) due to estimation of a function of μ, with plus linear cost of sampling from a population having both parameters unknown. A series of important first-order and second-order asymptotic (as c, the cost per unit sample, ) results is laid out including the first-order and second-order efficiency properties. Then, accurate sequential risk calculations are launched, which are then followed by two main results: (i) Theorem 4.1 shows an asymptotic risk efficiency property, and (ii) Theorem 5.1 shows an asymptotic second-order regret expansion associated with the proposed purely sequential MRPE strategy assuming suitable conditions on g(.). We also provide a bias-corrected version of the terminal estimator, We follow up with a number of interesting illustrations where Theorems 4.1–5.1 are readily exploited to conclude an asymptotic risk efficiency property and second-order regret expansion, respectively. A number of other interesting illustrations are highlighted where it is possible to verify the conclusions from Theorems 4.1–5.1 more directly with less stringent assumptions on the pilot sample size.
期刊介绍:
The purpose of Sequential Analysis is to contribute to theoretical and applied aspects of sequential methodologies in all areas of statistical science. Published papers highlight the development of new and important sequential approaches.
Interdisciplinary articles that emphasize the methodology of practical value to applied researchers and statistical consultants are highly encouraged. Papers that cover contemporary areas of applications including animal abundance, bioequivalence, communication science, computer simulations, data mining, directional data, disease mapping, environmental sampling, genome, imaging, microarrays, networking, parallel processing, pest management, sonar detection, spatial statistics, tracking, and engineering are deemed especially important. Of particular value are expository review articles that critically synthesize broad-based statistical issues. Papers on case-studies are also considered. All papers are refereed.