V. Bobrovskiy, J. Galvis, A. Kaplin, A. Sinitsyn, Marco Tognoli, P. Trucco
{"title":"地幔中质子迁移的数学模型","authors":"V. Bobrovskiy, J. Galvis, A. Kaplin, A. Sinitsyn, Marco Tognoli, P. Trucco","doi":"10.1051/mmnp/2022018","DOIUrl":null,"url":null,"abstract":"In the study, we address the mathematical problem of proton migration in the Earth’s\nmantle and suggest a prototype for exploring the Earth’s interior to map the effects of superionic\nproton conduction. The problem can be mathematically solved by deriving the self-consistent electromagnetic field potential U(x,t) and then reconstructing the distribution function f(x, v, t). Reducing the Vlasov-Maxwell system of equations to non-linear sh-Gordon hyperbolic and transport equations, the propagation of a non-linear wavefront within the domain and transport of the boundary conditions in the form of a non-linear wave are examined. By computing a 3D model and through Fourier-analysis, the spatial and electrical characteristics of potential U(x, t) are investigated. The numerical results are compared to the Fourier transformed quantities of the potential (V) obtained through field observations of the electric potential (Kuznetsov method). The non-stationary solutions for the forced oscillation of two-component system, and therefore, the oscillatory strengths of two types of charged particles can be usefully addressed by the proposed mathematical model. Moreover, the model, along with data analysis of the electric potential observations and probabilistic seismic hazard maps, can be used to develop an advanced seismic risk metric.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mathematical modelling of proton migration in Earth mantle\",\"authors\":\"V. Bobrovskiy, J. Galvis, A. Kaplin, A. Sinitsyn, Marco Tognoli, P. Trucco\",\"doi\":\"10.1051/mmnp/2022018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the study, we address the mathematical problem of proton migration in the Earth’s\\nmantle and suggest a prototype for exploring the Earth’s interior to map the effects of superionic\\nproton conduction. The problem can be mathematically solved by deriving the self-consistent electromagnetic field potential U(x,t) and then reconstructing the distribution function f(x, v, t). Reducing the Vlasov-Maxwell system of equations to non-linear sh-Gordon hyperbolic and transport equations, the propagation of a non-linear wavefront within the domain and transport of the boundary conditions in the form of a non-linear wave are examined. By computing a 3D model and through Fourier-analysis, the spatial and electrical characteristics of potential U(x, t) are investigated. The numerical results are compared to the Fourier transformed quantities of the potential (V) obtained through field observations of the electric potential (Kuznetsov method). The non-stationary solutions for the forced oscillation of two-component system, and therefore, the oscillatory strengths of two types of charged particles can be usefully addressed by the proposed mathematical model. Moreover, the model, along with data analysis of the electric potential observations and probabilistic seismic hazard maps, can be used to develop an advanced seismic risk metric.\",\"PeriodicalId\":18285,\"journal\":{\"name\":\"Mathematical Modelling of Natural Phenomena\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling of Natural Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/mmnp/2022018\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2022018","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Mathematical modelling of proton migration in Earth mantle
In the study, we address the mathematical problem of proton migration in the Earth’s
mantle and suggest a prototype for exploring the Earth’s interior to map the effects of superionic
proton conduction. The problem can be mathematically solved by deriving the self-consistent electromagnetic field potential U(x,t) and then reconstructing the distribution function f(x, v, t). Reducing the Vlasov-Maxwell system of equations to non-linear sh-Gordon hyperbolic and transport equations, the propagation of a non-linear wavefront within the domain and transport of the boundary conditions in the form of a non-linear wave are examined. By computing a 3D model and through Fourier-analysis, the spatial and electrical characteristics of potential U(x, t) are investigated. The numerical results are compared to the Fourier transformed quantities of the potential (V) obtained through field observations of the electric potential (Kuznetsov method). The non-stationary solutions for the forced oscillation of two-component system, and therefore, the oscillatory strengths of two types of charged particles can be usefully addressed by the proposed mathematical model. Moreover, the model, along with data analysis of the electric potential observations and probabilistic seismic hazard maps, can be used to develop an advanced seismic risk metric.
期刊介绍:
The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues.
Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.