Abdul Raize, P. Kumari, Somasekhara Goud Sontti, A. Atta
{"title":"利用CLSVOF方法研究收敛形状微通道中气泡形成动力学","authors":"Abdul Raize, P. Kumari, Somasekhara Goud Sontti, A. Atta","doi":"10.1515/cppm-2023-0030","DOIUrl":null,"url":null,"abstract":"Abstract Bubble formation in a square microchannel having a converging shape merging junction has been studied using the Coupled Level-Set and Volume-of-Fluid (CLSVOF) method. The influence of variations in merging junction angles, fluid properties, and operating conditions on the bubble length and pressure drop has been analyzed. The results show a direct relationship between surface tension, gas-liquid flow ratio, and the inverse relation of continuous phase viscosity with the bubble length. Moreover, opposite variations of these parameters are observed for pressure drop. This work reveals a discerning influence of the angle variations of merging junction on the interplay between inertial, viscous, and surface tension forces in the bubble formation mechanism. We envisage that this numerical work will be of significant interest for the process intensification in various industries that deal with gas-liquid microfluidic systems.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into the bubble formation dynamics in converging shape microchannels using CLSVOF method\",\"authors\":\"Abdul Raize, P. Kumari, Somasekhara Goud Sontti, A. Atta\",\"doi\":\"10.1515/cppm-2023-0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Bubble formation in a square microchannel having a converging shape merging junction has been studied using the Coupled Level-Set and Volume-of-Fluid (CLSVOF) method. The influence of variations in merging junction angles, fluid properties, and operating conditions on the bubble length and pressure drop has been analyzed. The results show a direct relationship between surface tension, gas-liquid flow ratio, and the inverse relation of continuous phase viscosity with the bubble length. Moreover, opposite variations of these parameters are observed for pressure drop. This work reveals a discerning influence of the angle variations of merging junction on the interplay between inertial, viscous, and surface tension forces in the bubble formation mechanism. We envisage that this numerical work will be of significant interest for the process intensification in various industries that deal with gas-liquid microfluidic systems.\",\"PeriodicalId\":9935,\"journal\":{\"name\":\"Chemical Product and Process Modeling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Product and Process Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cppm-2023-0030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2023-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Insights into the bubble formation dynamics in converging shape microchannels using CLSVOF method
Abstract Bubble formation in a square microchannel having a converging shape merging junction has been studied using the Coupled Level-Set and Volume-of-Fluid (CLSVOF) method. The influence of variations in merging junction angles, fluid properties, and operating conditions on the bubble length and pressure drop has been analyzed. The results show a direct relationship between surface tension, gas-liquid flow ratio, and the inverse relation of continuous phase viscosity with the bubble length. Moreover, opposite variations of these parameters are observed for pressure drop. This work reveals a discerning influence of the angle variations of merging junction on the interplay between inertial, viscous, and surface tension forces in the bubble formation mechanism. We envisage that this numerical work will be of significant interest for the process intensification in various industries that deal with gas-liquid microfluidic systems.
期刊介绍:
Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.