Kilanko Oluwaseun, O. O. Sunday, Dirisu O. Joseph, Leramo O Richard, Babalola O Philip, Aworinde K Abraham, Udo Mfon, Okonkwo M Alexander, Akomolafe I Marvellous, Saleh Bahaa
{"title":"尼日利亚六个选定地点能源系统优化利用的典型气象年数据分析","authors":"Kilanko Oluwaseun, O. O. Sunday, Dirisu O. Joseph, Leramo O Richard, Babalola O Philip, Aworinde K Abraham, Udo Mfon, Okonkwo M Alexander, Akomolafe I Marvellous, Saleh Bahaa","doi":"10.1093/ijlct/ctad014","DOIUrl":null,"url":null,"abstract":"\n In this study, the Typical Meteorological Year (TMY) data for six locations representing the 6 geo-political zones in Nigeria were generated and analyzed using the Sandia Method. The analysis shows that seasonal variations exist in all the selected locations indicating two distinct seasons: the dry and wet seasons with varying lengths from north to south of the country. Due to its high global radiation levels (21–25 MJ/m2/day), the North is a desirable location for solar-thermal systems. Also, the high monthly mean temperature variations (about 18°C), low relative humidity (15%) and constant wind speeds (4m/s) experienced in the first three months of the year aid the installation of wind energy systems and the application of evaporative cooling techniques that reduce the thermal load and energy consumption of buildings. On the other side, the high relative humidity (80%) and mediocre radiation values derived almost throughout the year in the South-west, South-east and South-south regions discourages the extensive application of evaporative cooling and solar energy based systems in such locations, but the moderate wind speeds (2.9 m/s) and monthly mean temperature variations associated with these regions between the first three months of the year allow for the application of natural ventilation and some passive cooling systems so as to reduce the thermal load of buildings in the regions. The information presented in this work can serve as a guide for design and selection of energy systems and application of energy-related projects in Nigeria.","PeriodicalId":14118,"journal":{"name":"International Journal of Low-carbon Technologies","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Typical Meteorological Year Data Analysis for Optimal Utilization of Energy Systems at Six Selected Locations in Nigeria\",\"authors\":\"Kilanko Oluwaseun, O. O. Sunday, Dirisu O. Joseph, Leramo O Richard, Babalola O Philip, Aworinde K Abraham, Udo Mfon, Okonkwo M Alexander, Akomolafe I Marvellous, Saleh Bahaa\",\"doi\":\"10.1093/ijlct/ctad014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, the Typical Meteorological Year (TMY) data for six locations representing the 6 geo-political zones in Nigeria were generated and analyzed using the Sandia Method. The analysis shows that seasonal variations exist in all the selected locations indicating two distinct seasons: the dry and wet seasons with varying lengths from north to south of the country. Due to its high global radiation levels (21–25 MJ/m2/day), the North is a desirable location for solar-thermal systems. Also, the high monthly mean temperature variations (about 18°C), low relative humidity (15%) and constant wind speeds (4m/s) experienced in the first three months of the year aid the installation of wind energy systems and the application of evaporative cooling techniques that reduce the thermal load and energy consumption of buildings. On the other side, the high relative humidity (80%) and mediocre radiation values derived almost throughout the year in the South-west, South-east and South-south regions discourages the extensive application of evaporative cooling and solar energy based systems in such locations, but the moderate wind speeds (2.9 m/s) and monthly mean temperature variations associated with these regions between the first three months of the year allow for the application of natural ventilation and some passive cooling systems so as to reduce the thermal load of buildings in the regions. The information presented in this work can serve as a guide for design and selection of energy systems and application of energy-related projects in Nigeria.\",\"PeriodicalId\":14118,\"journal\":{\"name\":\"International Journal of Low-carbon Technologies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Low-carbon Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/ijlct/ctad014\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Low-carbon Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/ijlct/ctad014","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Typical Meteorological Year Data Analysis for Optimal Utilization of Energy Systems at Six Selected Locations in Nigeria
In this study, the Typical Meteorological Year (TMY) data for six locations representing the 6 geo-political zones in Nigeria were generated and analyzed using the Sandia Method. The analysis shows that seasonal variations exist in all the selected locations indicating two distinct seasons: the dry and wet seasons with varying lengths from north to south of the country. Due to its high global radiation levels (21–25 MJ/m2/day), the North is a desirable location for solar-thermal systems. Also, the high monthly mean temperature variations (about 18°C), low relative humidity (15%) and constant wind speeds (4m/s) experienced in the first three months of the year aid the installation of wind energy systems and the application of evaporative cooling techniques that reduce the thermal load and energy consumption of buildings. On the other side, the high relative humidity (80%) and mediocre radiation values derived almost throughout the year in the South-west, South-east and South-south regions discourages the extensive application of evaporative cooling and solar energy based systems in such locations, but the moderate wind speeds (2.9 m/s) and monthly mean temperature variations associated with these regions between the first three months of the year allow for the application of natural ventilation and some passive cooling systems so as to reduce the thermal load of buildings in the regions. The information presented in this work can serve as a guide for design and selection of energy systems and application of energy-related projects in Nigeria.
期刊介绍:
The International Journal of Low-Carbon Technologies is a quarterly publication concerned with the challenge of climate change and its effects on the built environment and sustainability. The Journal publishes original, quality research papers on issues of climate change, sustainable development and the built environment related to architecture, building services engineering, civil engineering, building engineering, urban design and other disciplines. It features in-depth articles, technical notes, review papers, book reviews and special issues devoted to international conferences. The journal encourages submissions related to interdisciplinary research in the built environment. The journal is available in paper and electronic formats. All articles are peer-reviewed by leading experts in the field.