可变Lebesgue空间上双线性极大算子的加权范数不等式

Pub Date : 2018-11-01 DOI:10.5565/publmat6422004
D. Cruz-Uribe, O. Guzmán
{"title":"可变Lebesgue空间上双线性极大算子的加权范数不等式","authors":"D. Cruz-Uribe, O. Guzmán","doi":"10.5565/publmat6422004","DOIUrl":null,"url":null,"abstract":"We extend the theory of weighted norm inequalities on variable Lebesgue spaces to the case of bilinear operators. We introduce a bilinear version of the variable $\\A_\\pp$ condition, and show that it is necessary and sufficient for the bilinear maximal operator to satisfy a weighted norm inequality. Our work generalizes the linear results of the first author, Fiorenza and Neugebauer \\cite{dcu-f-nPreprint2010} in the variable Lebesgue spaces and the bilinear results of Lerner {\\em et al.} \\cite{MR2483720} in the classical Lebesgue spaces. As an application we prove weighted norm inequalities for bilinear singular integral operators in the variable Lebesgue spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Weighted norm inequalities for the bilinear maximal operator on variable Lebesgue spaces\",\"authors\":\"D. Cruz-Uribe, O. Guzmán\",\"doi\":\"10.5565/publmat6422004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the theory of weighted norm inequalities on variable Lebesgue spaces to the case of bilinear operators. We introduce a bilinear version of the variable $\\\\A_\\\\pp$ condition, and show that it is necessary and sufficient for the bilinear maximal operator to satisfy a weighted norm inequality. Our work generalizes the linear results of the first author, Fiorenza and Neugebauer \\\\cite{dcu-f-nPreprint2010} in the variable Lebesgue spaces and the bilinear results of Lerner {\\\\em et al.} \\\\cite{MR2483720} in the classical Lebesgue spaces. As an application we prove weighted norm inequalities for bilinear singular integral operators in the variable Lebesgue spaces.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6422004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6422004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们将变Lebesgue空间上的加权范数不等式理论推广到双线性算子的情况。我们引入了变量$\a_\pp$条件的双线性形式,并证明了双线性极大算子满足加权范数不等式的充要条件。我们的工作推广了第一作者Fiorenza和Neugebauer\cite{dcu-f-nPreprint2010}在可变Lebesgue空间中的线性结果以及Lerner等人在经典Lebesgue空格中的双线性结果。作为一个应用,我们证明了变Lebesgue空间中双线性奇异积分算子的加权范数不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Weighted norm inequalities for the bilinear maximal operator on variable Lebesgue spaces
We extend the theory of weighted norm inequalities on variable Lebesgue spaces to the case of bilinear operators. We introduce a bilinear version of the variable $\A_\pp$ condition, and show that it is necessary and sufficient for the bilinear maximal operator to satisfy a weighted norm inequality. Our work generalizes the linear results of the first author, Fiorenza and Neugebauer \cite{dcu-f-nPreprint2010} in the variable Lebesgue spaces and the bilinear results of Lerner {\em et al.} \cite{MR2483720} in the classical Lebesgue spaces. As an application we prove weighted norm inequalities for bilinear singular integral operators in the variable Lebesgue spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信