cz -施密特序列在平面半模格同余性质上的应用

Q4 Mathematics
G. Grätzer
{"title":"cz<s:1> -施密特序列在平面半模格同余性质上的应用","authors":"G. Grätzer","doi":"10.7151/dmgaa.1359","DOIUrl":null,"url":null,"abstract":"Abstract Following Grätzer and Knapp, 2009, a planar semimodular lattice L is rectangular, if the left boundary chain has exactly one doubly-irreducible element, cl, and the right boundary chain has exactly one doubly-irreducible element, cr, and these elements are complementary. The Czédli-Schmidt Sequences, introduced in 2012, construct rectangular lattices. We use them to prove some structure theorems. In particular, we prove that for a slim (no M3 sublattice) rectangular lattice L, the congruence lattice Con L has exactly length[cl, 1] + length[cr, 1] dual atoms and a dual atom in Con L is a congruence with exactly two classes. We also describe the prime ideals in a slim rectangular lattice.","PeriodicalId":36816,"journal":{"name":"Discussiones Mathematicae - General Algebra and Applications","volume":"41 1","pages":"153 - 169"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Applying the Czédli-Schmidt Sequences to Congruence Properties of Planar Semimodular Lattices\",\"authors\":\"G. Grätzer\",\"doi\":\"10.7151/dmgaa.1359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Following Grätzer and Knapp, 2009, a planar semimodular lattice L is rectangular, if the left boundary chain has exactly one doubly-irreducible element, cl, and the right boundary chain has exactly one doubly-irreducible element, cr, and these elements are complementary. The Czédli-Schmidt Sequences, introduced in 2012, construct rectangular lattices. We use them to prove some structure theorems. In particular, we prove that for a slim (no M3 sublattice) rectangular lattice L, the congruence lattice Con L has exactly length[cl, 1] + length[cr, 1] dual atoms and a dual atom in Con L is a congruence with exactly two classes. We also describe the prime ideals in a slim rectangular lattice.\",\"PeriodicalId\":36816,\"journal\":{\"name\":\"Discussiones Mathematicae - General Algebra and Applications\",\"volume\":\"41 1\",\"pages\":\"153 - 169\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae - General Algebra and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgaa.1359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae - General Algebra and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7151/dmgaa.1359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

摘要根据Grätzer和Knapp,2009,平面半模格L是矩形的,如果左边界链正好有一个双不可约元素cl,而右边界链恰好有一个双重不可约单元cr,并且这些元素是互补的。2012年引入的Czédli-Schmidt序列构造矩形晶格。我们用它们来证明一些结构定理。特别地,我们证明了对于细长(无M3子晶格)矩形晶格L,同余晶格Con L具有恰好长度[cl,1]+长度[cr,1]双原子,并且Con L中的双原子是恰好具有两类的同余。我们还描述了细长矩形格中的素理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying the Czédli-Schmidt Sequences to Congruence Properties of Planar Semimodular Lattices
Abstract Following Grätzer and Knapp, 2009, a planar semimodular lattice L is rectangular, if the left boundary chain has exactly one doubly-irreducible element, cl, and the right boundary chain has exactly one doubly-irreducible element, cr, and these elements are complementary. The Czédli-Schmidt Sequences, introduced in 2012, construct rectangular lattices. We use them to prove some structure theorems. In particular, we prove that for a slim (no M3 sublattice) rectangular lattice L, the congruence lattice Con L has exactly length[cl, 1] + length[cr, 1] dual atoms and a dual atom in Con L is a congruence with exactly two classes. We also describe the prime ideals in a slim rectangular lattice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discussiones Mathematicae - General Algebra and Applications
Discussiones Mathematicae - General Algebra and Applications Mathematics-Algebra and Number Theory
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
26 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信