一种新的软剪裁离散Beta GARCH模型及其在麻疹感染中的应用

Pub Date : 2023-02-09 DOI:10.3390/stats6010018
Huaping Chen
{"title":"一种新的软剪裁离散Beta GARCH模型及其在麻疹感染中的应用","authors":"Huaping Chen","doi":"10.3390/stats6010018","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a novel soft-clipping discrete beta GARCH (ScDBGARCH) model that provides an available method to model bounded time series with under-dispersion, equi-dispersion or over-dispersion. The new model not only allows positive dependence, but also negative dependence. The stochastic properties of the models are established, and these results are, in turn, used in the analysis of the asymptotic properties of the conditional maximum likelihood (CML) estimator of the new model. In addition, we apply the new model to measles infection to show its improved performance.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Soft-Clipping Discrete Beta GARCH Model and Its Application on Measles Infection\",\"authors\":\"Huaping Chen\",\"doi\":\"10.3390/stats6010018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a novel soft-clipping discrete beta GARCH (ScDBGARCH) model that provides an available method to model bounded time series with under-dispersion, equi-dispersion or over-dispersion. The new model not only allows positive dependence, but also negative dependence. The stochastic properties of the models are established, and these results are, in turn, used in the analysis of the asymptotic properties of the conditional maximum likelihood (CML) estimator of the new model. In addition, we apply the new model to measles infection to show its improved performance.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/stats6010018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6010018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们开发了一种新的软剪裁离散βGARCH(ScDBGARCH)模型,该模型为具有欠分散、等分散或过分散的有界时间序列建模提供了一种可用的方法。新模型不仅允许正依赖,也允许负依赖。建立了模型的随机性质,并将这些结果用于分析新模型的条件最大似然(CML)估计器的渐近性质。此外,我们将新模型应用于麻疹感染,以显示其改进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A New Soft-Clipping Discrete Beta GARCH Model and Its Application on Measles Infection
In this paper, we develop a novel soft-clipping discrete beta GARCH (ScDBGARCH) model that provides an available method to model bounded time series with under-dispersion, equi-dispersion or over-dispersion. The new model not only allows positive dependence, but also negative dependence. The stochastic properties of the models are established, and these results are, in turn, used in the analysis of the asymptotic properties of the conditional maximum likelihood (CML) estimator of the new model. In addition, we apply the new model to measles infection to show its improved performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信