{"title":"计算研究揭示了表儿茶素没食子酸盐对COVID-19中炎症和焦下垂相关介质的抑制潜力","authors":"Prem Rajak, Abhratanu Ganguly","doi":"10.1002/mef2.52","DOIUrl":null,"url":null,"abstract":"<p>Coronavirus disease-19 (COVID-19) is the global health emergency caused by SARS-CoV-2. Upon infection, antigenic determinants of the virus trigger massive production of proinflammatory/pyroptosis-associated proteins, resulting in cytokine storm, tissue damage, and multiorgan failure. Therefore, these proinflammatory/pyroptosis-associated mediators are promising therapeutic targets to combat COVID-19. Epicatechin gallate (ECG) is a polyphenol found in green tea. It has antioxidative and anti-inflammatory properties. Hence, in the present study, ECG was selected to explore its binding potential for inflammatory mediators such as interleukins, interferon-γ (IFNγ), and tumor necrosis factor-α (TNF-α), along with their native receptors. In addition, the interacting potential of ECG with pyroptosis-associated proteins, viz. caspases and BAX has also been investigated. Molecular docking analysis has revealed that ECG interacts with interleukins, IFNγ, TNF-α, cytokine receptors, caspase-1/4/11, and BAX with significant binding affinity. Several amino acid residues of these mediators were blocked by ECG through stable hydrogen bonds and hydrophobic contacts. ECG interacted with caspase-11, BAX, and TNF-R1 with better binding affinities. Therefore, the present in silico study indicates that ECG could be a potential drug to subvert cytokine storm and pyroptosis during COVID-19.</p>","PeriodicalId":74135,"journal":{"name":"MedComm - Future medicine","volume":"2 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mef2.52","citationCount":"3","resultStr":"{\"title\":\"Computational study unravels inhibitory potential of epicatechin gallate against inflammatory and pyroptosis-associated mediators in COVID-19\",\"authors\":\"Prem Rajak, Abhratanu Ganguly\",\"doi\":\"10.1002/mef2.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Coronavirus disease-19 (COVID-19) is the global health emergency caused by SARS-CoV-2. Upon infection, antigenic determinants of the virus trigger massive production of proinflammatory/pyroptosis-associated proteins, resulting in cytokine storm, tissue damage, and multiorgan failure. Therefore, these proinflammatory/pyroptosis-associated mediators are promising therapeutic targets to combat COVID-19. Epicatechin gallate (ECG) is a polyphenol found in green tea. It has antioxidative and anti-inflammatory properties. Hence, in the present study, ECG was selected to explore its binding potential for inflammatory mediators such as interleukins, interferon-γ (IFNγ), and tumor necrosis factor-α (TNF-α), along with their native receptors. In addition, the interacting potential of ECG with pyroptosis-associated proteins, viz. caspases and BAX has also been investigated. Molecular docking analysis has revealed that ECG interacts with interleukins, IFNγ, TNF-α, cytokine receptors, caspase-1/4/11, and BAX with significant binding affinity. Several amino acid residues of these mediators were blocked by ECG through stable hydrogen bonds and hydrophobic contacts. ECG interacted with caspase-11, BAX, and TNF-R1 with better binding affinities. Therefore, the present in silico study indicates that ECG could be a potential drug to subvert cytokine storm and pyroptosis during COVID-19.</p>\",\"PeriodicalId\":74135,\"journal\":{\"name\":\"MedComm - Future medicine\",\"volume\":\"2 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mef2.52\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedComm - Future medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mef2.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm - Future medicine","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mef2.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational study unravels inhibitory potential of epicatechin gallate against inflammatory and pyroptosis-associated mediators in COVID-19
Coronavirus disease-19 (COVID-19) is the global health emergency caused by SARS-CoV-2. Upon infection, antigenic determinants of the virus trigger massive production of proinflammatory/pyroptosis-associated proteins, resulting in cytokine storm, tissue damage, and multiorgan failure. Therefore, these proinflammatory/pyroptosis-associated mediators are promising therapeutic targets to combat COVID-19. Epicatechin gallate (ECG) is a polyphenol found in green tea. It has antioxidative and anti-inflammatory properties. Hence, in the present study, ECG was selected to explore its binding potential for inflammatory mediators such as interleukins, interferon-γ (IFNγ), and tumor necrosis factor-α (TNF-α), along with their native receptors. In addition, the interacting potential of ECG with pyroptosis-associated proteins, viz. caspases and BAX has also been investigated. Molecular docking analysis has revealed that ECG interacts with interleukins, IFNγ, TNF-α, cytokine receptors, caspase-1/4/11, and BAX with significant binding affinity. Several amino acid residues of these mediators were blocked by ECG through stable hydrogen bonds and hydrophobic contacts. ECG interacted with caspase-11, BAX, and TNF-R1 with better binding affinities. Therefore, the present in silico study indicates that ECG could be a potential drug to subvert cytokine storm and pyroptosis during COVID-19.