M. K. Murari, S. Kreutzer, M. Frouin, Johannes Friedrich, T. Lauer, N. Klasen, Christoph Schmidt, S. Tsukamoto, D. Richter, N. Mercier, M. Fuchs
{"title":"钾长石的红外荧光(IR-RF):实验室间比较","authors":"M. K. Murari, S. Kreutzer, M. Frouin, Johannes Friedrich, T. Lauer, N. Klasen, Christoph Schmidt, S. Tsukamoto, D. Richter, N. Mercier, M. Fuchs","doi":"10.2478/geochr-2021-0007","DOIUrl":null,"url":null,"abstract":"Abstract Infrared Radiofluorescence (IR-RF) is a relatively new method for dosimetric dating of the depositional timing of sediments. This contribution presents an interlaboratory comparison of IR-RF measurements of sedimentary feldspar from eight laboratories. A comparison of the variability of instrumental background, bleaching, saturation, and initial rise behaviour of the IR-RF signal was carried out. Two endmember samples, a naturally bleached modern dune sand sample with a zero dose and a naturally saturated sample from a Triassic sandstone (~250 Ma), were used for this interlaboratory comparison. The major findings of this study are that (1) the observed IR-RF signal keeps decreasing beyond 4000 Gy, (2) the saturated sample gives an apparent palaeodose of 1265 ± 329 Gy and (3) in most cases, the natural IR-RF signal of the modern analogue sample (resulting from natural bleaching) is higher than the signal from laboratory-induced bleaching of 6 h, using a solar simulator (SLS). In other words, the laboratory sample bleaching was unable to achieve the level of natural bleaching. The results of the investigations are discussed in detail, along with possible explanations.","PeriodicalId":50421,"journal":{"name":"Geochronometria","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Infrared Radiofluorescence (IR-RF) of K-Feldspar: An Interlaboratory Comparison\",\"authors\":\"M. K. Murari, S. Kreutzer, M. Frouin, Johannes Friedrich, T. Lauer, N. Klasen, Christoph Schmidt, S. Tsukamoto, D. Richter, N. Mercier, M. Fuchs\",\"doi\":\"10.2478/geochr-2021-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Infrared Radiofluorescence (IR-RF) is a relatively new method for dosimetric dating of the depositional timing of sediments. This contribution presents an interlaboratory comparison of IR-RF measurements of sedimentary feldspar from eight laboratories. A comparison of the variability of instrumental background, bleaching, saturation, and initial rise behaviour of the IR-RF signal was carried out. Two endmember samples, a naturally bleached modern dune sand sample with a zero dose and a naturally saturated sample from a Triassic sandstone (~250 Ma), were used for this interlaboratory comparison. The major findings of this study are that (1) the observed IR-RF signal keeps decreasing beyond 4000 Gy, (2) the saturated sample gives an apparent palaeodose of 1265 ± 329 Gy and (3) in most cases, the natural IR-RF signal of the modern analogue sample (resulting from natural bleaching) is higher than the signal from laboratory-induced bleaching of 6 h, using a solar simulator (SLS). In other words, the laboratory sample bleaching was unable to achieve the level of natural bleaching. The results of the investigations are discussed in detail, along with possible explanations.\",\"PeriodicalId\":50421,\"journal\":{\"name\":\"Geochronometria\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochronometria\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2478/geochr-2021-0007\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochronometria","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2478/geochr-2021-0007","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Infrared Radiofluorescence (IR-RF) of K-Feldspar: An Interlaboratory Comparison
Abstract Infrared Radiofluorescence (IR-RF) is a relatively new method for dosimetric dating of the depositional timing of sediments. This contribution presents an interlaboratory comparison of IR-RF measurements of sedimentary feldspar from eight laboratories. A comparison of the variability of instrumental background, bleaching, saturation, and initial rise behaviour of the IR-RF signal was carried out. Two endmember samples, a naturally bleached modern dune sand sample with a zero dose and a naturally saturated sample from a Triassic sandstone (~250 Ma), were used for this interlaboratory comparison. The major findings of this study are that (1) the observed IR-RF signal keeps decreasing beyond 4000 Gy, (2) the saturated sample gives an apparent palaeodose of 1265 ± 329 Gy and (3) in most cases, the natural IR-RF signal of the modern analogue sample (resulting from natural bleaching) is higher than the signal from laboratory-induced bleaching of 6 h, using a solar simulator (SLS). In other words, the laboratory sample bleaching was unable to achieve the level of natural bleaching. The results of the investigations are discussed in detail, along with possible explanations.
期刊介绍:
Geochronometria is aimed at integrating scientists developing different methods of absolute chronology and using them in different fields of earth and other natural sciences and archaeology. The methods in use are e.g. radiocarbon, stable isotopes, isotopes of natural decay series, optically stimulated luminescence, thermoluminescence, EPR/ESR, dendrochronology, varve chronology. The journal publishes papers that are devoted to developing the dating methods as well as studies concentrating on their applications in geology, palaeoclimatology, palaeobiology, palaeohydrology, geocgraphy and archaeology etc.