{"title":"体积约束下的非标准生长优化问题","authors":"A. Salort, Belem Schvager, Analía Silva","doi":"10.57262/die036-0708-573","DOIUrl":null,"url":null,"abstract":"In this article we study some optimal design problems related to nonstandard growth eigenvalues ruled by the $g-$Laplacian operator. More precisely, given $\\Omega\\subset \\R^n$ and $\\alpha,c>0$ we consider the optimization problem $\\inf \\{ \\lambda_\\Omega(\\alpha,E)\\colon E\\subset \\Omega, |E|=c \\}$, where $\\lambda_\\Omega(\\alpha,E)$ is related to the first eigenvalue to $$ -\\text{div}(g( |\\nabla u |)\\tfrac{\\nabla u}{|\\nabla u|}) + g(u)\\tfrac{u}{|u|}+ \\alpha \\chi_E g(u)\\tfrac{u}{|u|} \\quad \\text{ in }\\Omega $$ subject to Dirichlet, Neumann or Steklov boundary conditions. \\\\ We analyze existence of an optimal configuration, symmetry properties of them, and the asymptotic behavior as $\\alpha$ approaches $+\\infty$.","PeriodicalId":50581,"journal":{"name":"Differential and Integral Equations","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonstandard growth optimization problems with volume constraint\",\"authors\":\"A. Salort, Belem Schvager, Analía Silva\",\"doi\":\"10.57262/die036-0708-573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we study some optimal design problems related to nonstandard growth eigenvalues ruled by the $g-$Laplacian operator. More precisely, given $\\\\Omega\\\\subset \\\\R^n$ and $\\\\alpha,c>0$ we consider the optimization problem $\\\\inf \\\\{ \\\\lambda_\\\\Omega(\\\\alpha,E)\\\\colon E\\\\subset \\\\Omega, |E|=c \\\\}$, where $\\\\lambda_\\\\Omega(\\\\alpha,E)$ is related to the first eigenvalue to $$ -\\\\text{div}(g( |\\\\nabla u |)\\\\tfrac{\\\\nabla u}{|\\\\nabla u|}) + g(u)\\\\tfrac{u}{|u|}+ \\\\alpha \\\\chi_E g(u)\\\\tfrac{u}{|u|} \\\\quad \\\\text{ in }\\\\Omega $$ subject to Dirichlet, Neumann or Steklov boundary conditions. \\\\\\\\ We analyze existence of an optimal configuration, symmetry properties of them, and the asymptotic behavior as $\\\\alpha$ approaches $+\\\\infty$.\",\"PeriodicalId\":50581,\"journal\":{\"name\":\"Differential and Integral Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential and Integral Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/die036-0708-573\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential and Integral Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die036-0708-573","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Nonstandard growth optimization problems with volume constraint
In this article we study some optimal design problems related to nonstandard growth eigenvalues ruled by the $g-$Laplacian operator. More precisely, given $\Omega\subset \R^n$ and $\alpha,c>0$ we consider the optimization problem $\inf \{ \lambda_\Omega(\alpha,E)\colon E\subset \Omega, |E|=c \}$, where $\lambda_\Omega(\alpha,E)$ is related to the first eigenvalue to $$ -\text{div}(g( |\nabla u |)\tfrac{\nabla u}{|\nabla u|}) + g(u)\tfrac{u}{|u|}+ \alpha \chi_E g(u)\tfrac{u}{|u|} \quad \text{ in }\Omega $$ subject to Dirichlet, Neumann or Steklov boundary conditions. \\ We analyze existence of an optimal configuration, symmetry properties of them, and the asymptotic behavior as $\alpha$ approaches $+\infty$.
期刊介绍:
Differential and Integral Equations will publish carefully selected research papers on mathematical aspects of differential and integral equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new, and of interest to a substantial number of mathematicians working in these areas.