plga包封重组GroEL鼠伤寒沙门氏菌对肠出血性和肠致病性大肠杆菌免疫应答的评价

Q3 Biochemistry, Genetics and Molecular Biology
Milad Parvane, S. Nazarian, Emad Kordbache, Javad Fathi, Mohamad Ebrahim Minae, Mohammad Reza Ramezani
{"title":"plga包封重组GroEL鼠伤寒沙门氏菌对肠出血性和肠致病性大肠杆菌免疫应答的评价","authors":"Milad Parvane, S. Nazarian, Emad Kordbache, Javad Fathi, Mohamad Ebrahim Minae, Mohammad Reza Ramezani","doi":"10.18502/ajmb.v14i4.10484","DOIUrl":null,"url":null,"abstract":"Background: Heat Shock Proteins (HSPs) elicit humoral and cellular immune responses. Due to their high sequence homology, they can be developed as a new immunogen for cross prophylactic and vaccination effects against infectious agents such as Enteropathogenic and Enterohemorrhagic Escherichia coli (EPEC and EHEC). This study aimed to evaluate the immunogenicity and cross-protective efficacy of rGroEL of Salmonella typhi (S. typhi) encapsulated in poly lactic-co-glycolic acid (PLGA) nanoparticles against EPEC and EHEC. Methods: Recombinant GroEL was expressed in Escherichia coli (E. coli) and purified using Ni-NTA affinity chromatography. The protein was encapsulated in PLGA by the double emulsion method, and the nanoparticles were characterized physicochemically. BALB/c mice were immunized, and the efficacy of the protein to elicit immune responses was assessed. Results: Over-expression in E. coli led to corresponding 64.5 kDa protein bands in Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE). Non-aggregated nanoparticles had a spherical shape with a mean diameter of 194.3±3 nm and encapsulation efficiency of 89.5±2.5%. Antibody isotyping revealed that GroEL immunization induced both IgG1 and IgG2a antibodies. Moreover, immunization of the mice with recombinant GroEL protein conferred 80 and 60% protection against lethal infections by EPEC and EHEC, respectively. Furthermore, organ burden studies revealed a significant reduction in infection in the immunized mice compared to the non-immunized ones. Passive immunization with anti-GroEL sera also protected 50% of the mice against the lethal doses of EHEC and EPEC strains. Conclusion: The findings indicated that immunization of the mice with recombinant GroEL of S. typhi elicited cross-protection against other bacterial infections. This represented the immense potential of GroEL to be developed as a single vaccine against multiple pathogens.","PeriodicalId":8669,"journal":{"name":"Avicenna journal of medical biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evaluation of PLGA-Encapsulated Recombinant GroEL of S. typhi immune Responses Against Enterohaemorrhagic and Enteropathogenic Escherichia coli\",\"authors\":\"Milad Parvane, S. Nazarian, Emad Kordbache, Javad Fathi, Mohamad Ebrahim Minae, Mohammad Reza Ramezani\",\"doi\":\"10.18502/ajmb.v14i4.10484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Heat Shock Proteins (HSPs) elicit humoral and cellular immune responses. Due to their high sequence homology, they can be developed as a new immunogen for cross prophylactic and vaccination effects against infectious agents such as Enteropathogenic and Enterohemorrhagic Escherichia coli (EPEC and EHEC). This study aimed to evaluate the immunogenicity and cross-protective efficacy of rGroEL of Salmonella typhi (S. typhi) encapsulated in poly lactic-co-glycolic acid (PLGA) nanoparticles against EPEC and EHEC. Methods: Recombinant GroEL was expressed in Escherichia coli (E. coli) and purified using Ni-NTA affinity chromatography. The protein was encapsulated in PLGA by the double emulsion method, and the nanoparticles were characterized physicochemically. BALB/c mice were immunized, and the efficacy of the protein to elicit immune responses was assessed. Results: Over-expression in E. coli led to corresponding 64.5 kDa protein bands in Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE). Non-aggregated nanoparticles had a spherical shape with a mean diameter of 194.3±3 nm and encapsulation efficiency of 89.5±2.5%. Antibody isotyping revealed that GroEL immunization induced both IgG1 and IgG2a antibodies. Moreover, immunization of the mice with recombinant GroEL protein conferred 80 and 60% protection against lethal infections by EPEC and EHEC, respectively. Furthermore, organ burden studies revealed a significant reduction in infection in the immunized mice compared to the non-immunized ones. Passive immunization with anti-GroEL sera also protected 50% of the mice against the lethal doses of EHEC and EPEC strains. Conclusion: The findings indicated that immunization of the mice with recombinant GroEL of S. typhi elicited cross-protection against other bacterial infections. This represented the immense potential of GroEL to be developed as a single vaccine against multiple pathogens.\",\"PeriodicalId\":8669,\"journal\":{\"name\":\"Avicenna journal of medical biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Avicenna journal of medical biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18502/ajmb.v14i4.10484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avicenna journal of medical biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/ajmb.v14i4.10484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 3

摘要

背景:热休克蛋白(HSPs)引起体液和细胞免疫反应。由于它们具有高度的序列同源性,因此可以作为一种新的免疫原,用于交叉预防和预防肠致病性和肠出血性大肠杆菌(EPEC和EHEC)等感染性病原体。本研究旨在评价聚乳酸-羟基乙酸(PLGA)纳米颗粒包封的伤寒沙门菌rGroEL对EPEC和EHEC的免疫原性和交叉保护作用。方法:重组GroEL在大肠杆菌中表达,采用Ni-NTA亲和层析纯化。采用双乳法制备聚乳酸包封蛋白,并对纳米颗粒进行了理化表征。对BALB/c小鼠进行免疫,并评估该蛋白引发免疫应答的效果。结果:在大肠杆菌中过表达,十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)显示相应的64.5 kDa蛋白条带。非聚集纳米颗粒呈球形,平均直径为194.3±3 nm,包封率为89.5±2.5%。抗体同型分析显示,GroEL免疫可诱导IgG1和IgG2a抗体。此外,重组GroEL蛋白免疫小鼠对EPEC和EHEC致死性感染分别具有80%和60%的保护作用。此外,器官负荷研究显示,与未接种的小鼠相比,免疫小鼠的感染显著减少。抗groel血清被动免疫也能保护50%的小鼠免受肠出血性大肠杆菌和EPEC菌株的致死剂量。结论:用重组鼠伤寒沙门氏菌GroEL免疫小鼠可引起对其他细菌感染的交叉保护。这代表了GroEL作为一种针对多种病原体的单一疫苗的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of PLGA-Encapsulated Recombinant GroEL of S. typhi immune Responses Against Enterohaemorrhagic and Enteropathogenic Escherichia coli
Background: Heat Shock Proteins (HSPs) elicit humoral and cellular immune responses. Due to their high sequence homology, they can be developed as a new immunogen for cross prophylactic and vaccination effects against infectious agents such as Enteropathogenic and Enterohemorrhagic Escherichia coli (EPEC and EHEC). This study aimed to evaluate the immunogenicity and cross-protective efficacy of rGroEL of Salmonella typhi (S. typhi) encapsulated in poly lactic-co-glycolic acid (PLGA) nanoparticles against EPEC and EHEC. Methods: Recombinant GroEL was expressed in Escherichia coli (E. coli) and purified using Ni-NTA affinity chromatography. The protein was encapsulated in PLGA by the double emulsion method, and the nanoparticles were characterized physicochemically. BALB/c mice were immunized, and the efficacy of the protein to elicit immune responses was assessed. Results: Over-expression in E. coli led to corresponding 64.5 kDa protein bands in Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE). Non-aggregated nanoparticles had a spherical shape with a mean diameter of 194.3±3 nm and encapsulation efficiency of 89.5±2.5%. Antibody isotyping revealed that GroEL immunization induced both IgG1 and IgG2a antibodies. Moreover, immunization of the mice with recombinant GroEL protein conferred 80 and 60% protection against lethal infections by EPEC and EHEC, respectively. Furthermore, organ burden studies revealed a significant reduction in infection in the immunized mice compared to the non-immunized ones. Passive immunization with anti-GroEL sera also protected 50% of the mice against the lethal doses of EHEC and EPEC strains. Conclusion: The findings indicated that immunization of the mice with recombinant GroEL of S. typhi elicited cross-protection against other bacterial infections. This represented the immense potential of GroEL to be developed as a single vaccine against multiple pathogens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Avicenna journal of medical biotechnology
Avicenna journal of medical biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
2.90
自引率
0.00%
发文量
43
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信