U. Chasanah, W. Trisunaryanti, Triyono, H. Oktaviano, I. Santoso, D. A. Fatmawati
{"title":"研究绿色还原剂生产高还原性氧化石墨烯的效果及其特性","authors":"U. Chasanah, W. Trisunaryanti, Triyono, H. Oktaviano, I. Santoso, D. A. Fatmawati","doi":"10.21924/cst.7.2.2022.906","DOIUrl":null,"url":null,"abstract":"The study of the green reductant effects to produce reduced graphene oxide (rGO) has been completed successfully. The reduction of graphene oxide (GO) was carried out chemically using various reductants such as ascorbic acid (rGO-AA), gallic acid (rGO-AG), and trisodium citrate (rGO-NS). The GO was prepared using the Tour method at a temperature of 65 ? for 6 hours with potassium permanganate: graphite weight ratio 1:3.5. The results showed that rGO-AA had the highest electrical conductivity value of 755.70 S/m, with characteristics such as a surface area of 255.93 m2/g, a pore volume of 0.61 cm3/g, an average pore diameter of 7.10 nm, ID/IG ratio of 1.93, and three graphene layers in the material nanostructure stack. Therefore, it can be concluded that the reduction of GO with ascorbic acid (rGO-AA) is the most effective in producing rGO.","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study of green reductant effects of highly reduced graphene oxide production and their characteristics\",\"authors\":\"U. Chasanah, W. Trisunaryanti, Triyono, H. Oktaviano, I. Santoso, D. A. Fatmawati\",\"doi\":\"10.21924/cst.7.2.2022.906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of the green reductant effects to produce reduced graphene oxide (rGO) has been completed successfully. The reduction of graphene oxide (GO) was carried out chemically using various reductants such as ascorbic acid (rGO-AA), gallic acid (rGO-AG), and trisodium citrate (rGO-NS). The GO was prepared using the Tour method at a temperature of 65 ? for 6 hours with potassium permanganate: graphite weight ratio 1:3.5. The results showed that rGO-AA had the highest electrical conductivity value of 755.70 S/m, with characteristics such as a surface area of 255.93 m2/g, a pore volume of 0.61 cm3/g, an average pore diameter of 7.10 nm, ID/IG ratio of 1.93, and three graphene layers in the material nanostructure stack. Therefore, it can be concluded that the reduction of GO with ascorbic acid (rGO-AA) is the most effective in producing rGO.\",\"PeriodicalId\":36437,\"journal\":{\"name\":\"Communications in Science and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21924/cst.7.2.2022.906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21924/cst.7.2.2022.906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Study of green reductant effects of highly reduced graphene oxide production and their characteristics
The study of the green reductant effects to produce reduced graphene oxide (rGO) has been completed successfully. The reduction of graphene oxide (GO) was carried out chemically using various reductants such as ascorbic acid (rGO-AA), gallic acid (rGO-AG), and trisodium citrate (rGO-NS). The GO was prepared using the Tour method at a temperature of 65 ? for 6 hours with potassium permanganate: graphite weight ratio 1:3.5. The results showed that rGO-AA had the highest electrical conductivity value of 755.70 S/m, with characteristics such as a surface area of 255.93 m2/g, a pore volume of 0.61 cm3/g, an average pore diameter of 7.10 nm, ID/IG ratio of 1.93, and three graphene layers in the material nanostructure stack. Therefore, it can be concluded that the reduction of GO with ascorbic acid (rGO-AA) is the most effective in producing rGO.