纳米SiC和Gr对航空级Al7075复合材料力学性能的影响

IF 1.2 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
M. Ravikumar, Rudra Nail
{"title":"纳米SiC和Gr对航空级Al7075复合材料力学性能的影响","authors":"M. Ravikumar, Rudra Nail","doi":"10.3221/igf-esis.62.30","DOIUrl":null,"url":null,"abstract":"Aluminum composites exhibit high resistance to wear and corrosion, possess high strength, offer durability and more such properties. In this study, Al7075, reinforced with nano size SiC - Gr was produced by a stir casting technique and its microstructure and mechanical behavior were evaluated. Reinforcements were added in the range of 0 - 3 wt. %. The microstructure study, tensile and compression strength of the developed hybrid Metal Matrix Composites have been analyzed and examined. From the investigational study, it was found that the reinforcements are evenly dispersed in the base material. The porosity and density of the developed composites were found to be enhanced. The mechanical properties such as ultimate tensile and compressive strength of the developed MMCs could be improved by addition of SiC particulates compared to base material. Further, the strength of developed hybrid composites was found to be decreased by adding of solid lubricant such as graphite (Gr) particulates along with hard ceramic particulates. Finally, fractured surface of the tensile test specimens were analysed using a SEM analysis.","PeriodicalId":38546,"journal":{"name":"Frattura ed Integrita Strutturale","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Impact of nano sized SiC and Gr on mechanical properties of aerospace grade Al7075 composites\",\"authors\":\"M. Ravikumar, Rudra Nail\",\"doi\":\"10.3221/igf-esis.62.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aluminum composites exhibit high resistance to wear and corrosion, possess high strength, offer durability and more such properties. In this study, Al7075, reinforced with nano size SiC - Gr was produced by a stir casting technique and its microstructure and mechanical behavior were evaluated. Reinforcements were added in the range of 0 - 3 wt. %. The microstructure study, tensile and compression strength of the developed hybrid Metal Matrix Composites have been analyzed and examined. From the investigational study, it was found that the reinforcements are evenly dispersed in the base material. The porosity and density of the developed composites were found to be enhanced. The mechanical properties such as ultimate tensile and compressive strength of the developed MMCs could be improved by addition of SiC particulates compared to base material. Further, the strength of developed hybrid composites was found to be decreased by adding of solid lubricant such as graphite (Gr) particulates along with hard ceramic particulates. Finally, fractured surface of the tensile test specimens were analysed using a SEM analysis.\",\"PeriodicalId\":38546,\"journal\":{\"name\":\"Frattura ed Integrita Strutturale\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frattura ed Integrita Strutturale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3221/igf-esis.62.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frattura ed Integrita Strutturale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3221/igf-esis.62.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

铝复合材料具有高耐磨性和耐腐蚀性,具有高强度,提供耐久性等性能。采用搅拌铸造法制备了纳米SiC - Gr增强Al7075,并对其显微组织和力学性能进行了研究。增强剂的添加量在0 - 3重量%之间。对所制备的混杂金属基复合材料进行了显微组织研究和抗拉、抗压强度分析。通过试验研究发现,增强材料均匀地分散在基体中。复合材料的孔隙率和密度都得到了提高。与基材相比,SiC颗粒的加入可以提高复合材料的抗拉强度和抗压强度等力学性能。此外,在硬质陶瓷颗粒中加入固体润滑剂(如石墨颗粒)会降低复合材料的强度。最后,对拉伸试样的断裂面进行了扫描电镜分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of nano sized SiC and Gr on mechanical properties of aerospace grade Al7075 composites
Aluminum composites exhibit high resistance to wear and corrosion, possess high strength, offer durability and more such properties. In this study, Al7075, reinforced with nano size SiC - Gr was produced by a stir casting technique and its microstructure and mechanical behavior were evaluated. Reinforcements were added in the range of 0 - 3 wt. %. The microstructure study, tensile and compression strength of the developed hybrid Metal Matrix Composites have been analyzed and examined. From the investigational study, it was found that the reinforcements are evenly dispersed in the base material. The porosity and density of the developed composites were found to be enhanced. The mechanical properties such as ultimate tensile and compressive strength of the developed MMCs could be improved by addition of SiC particulates compared to base material. Further, the strength of developed hybrid composites was found to be decreased by adding of solid lubricant such as graphite (Gr) particulates along with hard ceramic particulates. Finally, fractured surface of the tensile test specimens were analysed using a SEM analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frattura ed Integrita Strutturale
Frattura ed Integrita Strutturale Engineering-Mechanical Engineering
CiteScore
3.40
自引率
0.00%
发文量
114
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信