具有薄谱的中心PSD矩阵是M-矩阵

IF 0.7 4区 数学 Q2 Mathematics
K. Devriendt
{"title":"具有薄谱的中心PSD矩阵是M-矩阵","authors":"K. Devriendt","doi":"10.13001/ela.2023.7051","DOIUrl":null,"url":null,"abstract":"We show that real, symmetric, centered (zero row sum) positive semidefinite matrices of order $n$ and rank $n-1$ with eigenvalue ratio $\\lambda_{\\max}/\\lambda_{\\min}\\leq n/(n-2)$ between the largest and smallest nonzero eigenvalue have nonpositive off-diagonal entries, and that this eigenvalue criterion is tight. The result is relevant in the context of matrix theory and inverse eigenvalue problems, and we discuss an application to Laplacian matrices.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Centered PSD matrices with thin spectrum are M-matrices\",\"authors\":\"K. Devriendt\",\"doi\":\"10.13001/ela.2023.7051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that real, symmetric, centered (zero row sum) positive semidefinite matrices of order $n$ and rank $n-1$ with eigenvalue ratio $\\\\lambda_{\\\\max}/\\\\lambda_{\\\\min}\\\\leq n/(n-2)$ between the largest and smallest nonzero eigenvalue have nonpositive off-diagonal entries, and that this eigenvalue criterion is tight. The result is relevant in the context of matrix theory and inverse eigenvalue problems, and we discuss an application to Laplacian matrices.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2023.7051\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2023.7051","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了在最大和最小的非零特征值之间的特征值比$\lambda_{\max}/\lambda_{\min}\leq n/(n-2)$的阶为$n$和阶为$n-1$的实的、对称的、中心的(零行和)正半定矩阵具有非正的非对角线项,并且该特征值准则是紧的。结果与矩阵理论和特征值反问题有关,并讨论了在拉普拉斯矩阵中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Centered PSD matrices with thin spectrum are M-matrices
We show that real, symmetric, centered (zero row sum) positive semidefinite matrices of order $n$ and rank $n-1$ with eigenvalue ratio $\lambda_{\max}/\lambda_{\min}\leq n/(n-2)$ between the largest and smallest nonzero eigenvalue have nonpositive off-diagonal entries, and that this eigenvalue criterion is tight. The result is relevant in the context of matrix theory and inverse eigenvalue problems, and we discuss an application to Laplacian matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信