{"title":"掺偏高岭土透水混凝土强度、渗透性及微结构研究","authors":"R. M.","doi":"10.14525/jjce.v17i1.02","DOIUrl":null,"url":null,"abstract":"Pervious concrete is a developing construction material used for sustainable solutions which helps restore the groundwater level based on its draining ability. The existing research studies address the strength and permeability of pervious-concrete materials and only limited data is available on the microstructural characteristics of pervious concrete. In this study, a characteristic analysis was carried out at micro-and macrolevels to identify the behaviour of pervious concrete using three aggregate gradations. To attain the wide pore network in pervious concrete, fine aggregates were not added in mixes and metakaolin was added at 5% intervals up to 20% of cement. At the macro-level, strength, porosity and permeability were tested and at the micro-level, XRD, FTIR, SEM and EDAX analyses were used for pervious-concrete mixes with metakaolin. The maximum strength of pervious-concrete was achieved in a 4.75-9.5 mm size aggregate mix at 10% addition of metakaolin with cement. Micro-structural studies revealed that the addition of metakaolin significantly reduces anhydrous calcium hydroxide. A significant draining performance of more than 1 cm/s was attained in most of the pervious-concrete mixes due to high porosity and permeability. Hence, pervious concrete is considered as a sustainable alternative material that can address environmental problems. KEYWORDS: Pervious concrete, Porosity, Permeability, Metakaolin, Micro-structure.","PeriodicalId":51814,"journal":{"name":"Jordan Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Strength, Permeability and Micro-structure of Pervious Concrete Blended with Metakaolin\",\"authors\":\"R. M.\",\"doi\":\"10.14525/jjce.v17i1.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pervious concrete is a developing construction material used for sustainable solutions which helps restore the groundwater level based on its draining ability. The existing research studies address the strength and permeability of pervious-concrete materials and only limited data is available on the microstructural characteristics of pervious concrete. In this study, a characteristic analysis was carried out at micro-and macrolevels to identify the behaviour of pervious concrete using three aggregate gradations. To attain the wide pore network in pervious concrete, fine aggregates were not added in mixes and metakaolin was added at 5% intervals up to 20% of cement. At the macro-level, strength, porosity and permeability were tested and at the micro-level, XRD, FTIR, SEM and EDAX analyses were used for pervious-concrete mixes with metakaolin. The maximum strength of pervious-concrete was achieved in a 4.75-9.5 mm size aggregate mix at 10% addition of metakaolin with cement. Micro-structural studies revealed that the addition of metakaolin significantly reduces anhydrous calcium hydroxide. A significant draining performance of more than 1 cm/s was attained in most of the pervious-concrete mixes due to high porosity and permeability. Hence, pervious concrete is considered as a sustainable alternative material that can address environmental problems. KEYWORDS: Pervious concrete, Porosity, Permeability, Metakaolin, Micro-structure.\",\"PeriodicalId\":51814,\"journal\":{\"name\":\"Jordan Journal of Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14525/jjce.v17i1.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14525/jjce.v17i1.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Study on Strength, Permeability and Micro-structure of Pervious Concrete Blended with Metakaolin
Pervious concrete is a developing construction material used for sustainable solutions which helps restore the groundwater level based on its draining ability. The existing research studies address the strength and permeability of pervious-concrete materials and only limited data is available on the microstructural characteristics of pervious concrete. In this study, a characteristic analysis was carried out at micro-and macrolevels to identify the behaviour of pervious concrete using three aggregate gradations. To attain the wide pore network in pervious concrete, fine aggregates were not added in mixes and metakaolin was added at 5% intervals up to 20% of cement. At the macro-level, strength, porosity and permeability were tested and at the micro-level, XRD, FTIR, SEM and EDAX analyses were used for pervious-concrete mixes with metakaolin. The maximum strength of pervious-concrete was achieved in a 4.75-9.5 mm size aggregate mix at 10% addition of metakaolin with cement. Micro-structural studies revealed that the addition of metakaolin significantly reduces anhydrous calcium hydroxide. A significant draining performance of more than 1 cm/s was attained in most of the pervious-concrete mixes due to high porosity and permeability. Hence, pervious concrete is considered as a sustainable alternative material that can address environmental problems. KEYWORDS: Pervious concrete, Porosity, Permeability, Metakaolin, Micro-structure.
期刊介绍:
I am very pleased and honored to be appointed as an Editor-in-Chief of the Jordan Journal of Civil Engineering which enjoys an excellent reputation, both locally and internationally. Since development is the essence of life, I hope to continue developing this distinguished Journal, building on the effort of all the Editors-in-Chief and Editorial Board Members as well as Advisory Boards of the Journal since its establishment about a decade ago. I will do my best to focus on publishing high quality diverse articles and move forward in the indexing issue of the Journal.