Simon Aagaard Pedersen, B. Yang, Christian S. Jensen, J. Møller
{"title":"带到达窗口的随机路由","authors":"Simon Aagaard Pedersen, B. Yang, Christian S. Jensen, J. Møller","doi":"10.1145/3617500","DOIUrl":null,"url":null,"abstract":"Arriving at a destination within a specific time window is important in many transportation settings. For example, trucks may be penalized for early or late arrivals at compact terminals, and early and late arrivals at general practitioners, dentists, and so on, are also discouraged, in part due to COVID. We propose foundations for routing with arrival-window constraints. In a setting where the travel time of a road segment is modeled by a probability distribution, we define two problems where the aim is to find a route from a source to a destination that optimizes or yields a high probability of arriving within a time window while departing as late as possible. In this setting, a core challenge is to enable comparison between paths that may potentially be part of a result path with the goal of determining whether a path is uninteresting and can be disregarded given the existence of another path. We show that existing solutions cannot be applied in this problem setting and instead propose novel comparison methods. Additionally, we introduce the notion of Stochastic Arrival-Window Contraction Hierarchies that enable accelerated query processing in the article’s setting. Next, we present routing algorithms that exploit the above comparison methods in combination with so-called pivot paths and contraction hierarchies to enable efficient processing of the two types of queries. Finally, a detailed experimental study provides empirical insights that justify the need for the two types of routing and also offers insight into key characteristics of the problem solutions.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Routing with Arrival Windows\",\"authors\":\"Simon Aagaard Pedersen, B. Yang, Christian S. Jensen, J. Møller\",\"doi\":\"10.1145/3617500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arriving at a destination within a specific time window is important in many transportation settings. For example, trucks may be penalized for early or late arrivals at compact terminals, and early and late arrivals at general practitioners, dentists, and so on, are also discouraged, in part due to COVID. We propose foundations for routing with arrival-window constraints. In a setting where the travel time of a road segment is modeled by a probability distribution, we define two problems where the aim is to find a route from a source to a destination that optimizes or yields a high probability of arriving within a time window while departing as late as possible. In this setting, a core challenge is to enable comparison between paths that may potentially be part of a result path with the goal of determining whether a path is uninteresting and can be disregarded given the existence of another path. We show that existing solutions cannot be applied in this problem setting and instead propose novel comparison methods. Additionally, we introduce the notion of Stochastic Arrival-Window Contraction Hierarchies that enable accelerated query processing in the article’s setting. Next, we present routing algorithms that exploit the above comparison methods in combination with so-called pivot paths and contraction hierarchies to enable efficient processing of the two types of queries. Finally, a detailed experimental study provides empirical insights that justify the need for the two types of routing and also offers insight into key characteristics of the problem solutions.\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3617500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3617500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Arriving at a destination within a specific time window is important in many transportation settings. For example, trucks may be penalized for early or late arrivals at compact terminals, and early and late arrivals at general practitioners, dentists, and so on, are also discouraged, in part due to COVID. We propose foundations for routing with arrival-window constraints. In a setting where the travel time of a road segment is modeled by a probability distribution, we define two problems where the aim is to find a route from a source to a destination that optimizes or yields a high probability of arriving within a time window while departing as late as possible. In this setting, a core challenge is to enable comparison between paths that may potentially be part of a result path with the goal of determining whether a path is uninteresting and can be disregarded given the existence of another path. We show that existing solutions cannot be applied in this problem setting and instead propose novel comparison methods. Additionally, we introduce the notion of Stochastic Arrival-Window Contraction Hierarchies that enable accelerated query processing in the article’s setting. Next, we present routing algorithms that exploit the above comparison methods in combination with so-called pivot paths and contraction hierarchies to enable efficient processing of the two types of queries. Finally, a detailed experimental study provides empirical insights that justify the need for the two types of routing and also offers insight into key characteristics of the problem solutions.
期刊介绍:
ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.