移动虚拟社区和远程工作中避免无线传感器网络链路故障的分类方法

Q3 Business, Management and Accounting
S. Periannasamy, P. Thirumurugan
{"title":"移动虚拟社区和远程工作中避免无线传感器网络链路故障的分类方法","authors":"S. Periannasamy, P. Thirumurugan","doi":"10.1504/IJENM.2018.10015772","DOIUrl":null,"url":null,"abstract":"Security issues are the primary issues in wireless sensor networks (WSN) due to its large network coverage and number of nodes. The attackers in WSN attack the particular node which has a low energy level and converts this node into malicious node. The formation of malicious node is the primary reason for link failures between nodes. This paper proposes an efficient methodology to detect the malicious nodes in WSN using feed forward back propagation neural network classifier. This classifier differentiates the malicious node from trusty node based on the extracted features of the test node. The performance of the proposed malicious node detection system is analysed in terms of detection rate, packet delivery ratio (PDR) and latency. The experimental results are compared with state-of-art methods.","PeriodicalId":39284,"journal":{"name":"International Journal of Enterprise Network Management","volume":"9 1","pages":"217-226"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification approach to avoid link failures in wireless sensor networks in mobile virtual communities and teleworking\",\"authors\":\"S. Periannasamy, P. Thirumurugan\",\"doi\":\"10.1504/IJENM.2018.10015772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Security issues are the primary issues in wireless sensor networks (WSN) due to its large network coverage and number of nodes. The attackers in WSN attack the particular node which has a low energy level and converts this node into malicious node. The formation of malicious node is the primary reason for link failures between nodes. This paper proposes an efficient methodology to detect the malicious nodes in WSN using feed forward back propagation neural network classifier. This classifier differentiates the malicious node from trusty node based on the extracted features of the test node. The performance of the proposed malicious node detection system is analysed in terms of detection rate, packet delivery ratio (PDR) and latency. The experimental results are compared with state-of-art methods.\",\"PeriodicalId\":39284,\"journal\":{\"name\":\"International Journal of Enterprise Network Management\",\"volume\":\"9 1\",\"pages\":\"217-226\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Enterprise Network Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJENM.2018.10015772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Enterprise Network Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJENM.2018.10015772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 0

摘要

由于无线传感器网络的网络覆盖范围大、节点数量多,安全问题是其面临的首要问题。WSN中的攻击者攻击某一特定的低能级节点,并将其转化为恶意节点。恶意节点的形成是节点间链路失效的主要原因。本文提出了一种利用前馈反向传播神经网络分类器检测WSN中恶意节点的有效方法。该分类器基于提取的测试节点特征来区分恶意节点和可信节点。从检测率、包投递率(PDR)和时延等方面分析了所提出的恶意节点检测系统的性能。实验结果与现有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification approach to avoid link failures in wireless sensor networks in mobile virtual communities and teleworking
Security issues are the primary issues in wireless sensor networks (WSN) due to its large network coverage and number of nodes. The attackers in WSN attack the particular node which has a low energy level and converts this node into malicious node. The formation of malicious node is the primary reason for link failures between nodes. This paper proposes an efficient methodology to detect the malicious nodes in WSN using feed forward back propagation neural network classifier. This classifier differentiates the malicious node from trusty node based on the extracted features of the test node. The performance of the proposed malicious node detection system is analysed in terms of detection rate, packet delivery ratio (PDR) and latency. The experimental results are compared with state-of-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Enterprise Network Management
International Journal of Enterprise Network Management Business, Management and Accounting-Management of Technology and Innovation
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信