C'edric Dion, Antonio Lei, Anwesh Ray, Daniel Vallières
{"title":"关于与多重图相关的IWASAWA不变量的分布","authors":"C'edric Dion, Antonio Lei, Anwesh Ray, Daniel Vallières","doi":"10.1017/nmj.2023.18","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>Let <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000181_inline1.png\" />\n\t\t<jats:tex-math>\n$\\ell $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> be a prime number. The Iwasawa theory of multigraphs is the systematic study of growth patterns in the number of spanning trees in abelian <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000181_inline2.png\" />\n\t\t<jats:tex-math>\n$\\ell $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-towers of multigraphs. In this context, growth patterns are realized by certain analogs of Iwasawa invariants, which depend on the prime <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000181_inline3.png\" />\n\t\t<jats:tex-math>\n$\\ell $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and the abelian <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000181_inline4.png\" />\n\t\t<jats:tex-math>\n$\\ell $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-tower of multigraphs. We formulate and study statistical questions about the behavior of the Iwasawa <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000181_inline5.png\" />\n\t\t<jats:tex-math>\n$\\mu $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000181_inline6.png\" />\n\t\t<jats:tex-math>\n$\\lambda $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> invariants.</jats:p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ON THE DISTRIBUTION OF IWASAWA INVARIANTS ASSOCIATED TO MULTIGRAPHS\",\"authors\":\"C'edric Dion, Antonio Lei, Anwesh Ray, Daniel Vallières\",\"doi\":\"10.1017/nmj.2023.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>Let <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000181_inline1.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\ell $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> be a prime number. The Iwasawa theory of multigraphs is the systematic study of growth patterns in the number of spanning trees in abelian <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000181_inline2.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\ell $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-towers of multigraphs. In this context, growth patterns are realized by certain analogs of Iwasawa invariants, which depend on the prime <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000181_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\ell $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and the abelian <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000181_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\ell $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-tower of multigraphs. We formulate and study statistical questions about the behavior of the Iwasawa <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000181_inline5.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\mu $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000181_inline6.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\lambda $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> invariants.</jats:p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2023.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2023.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ON THE DISTRIBUTION OF IWASAWA INVARIANTS ASSOCIATED TO MULTIGRAPHS
Let
$\ell $
be a prime number. The Iwasawa theory of multigraphs is the systematic study of growth patterns in the number of spanning trees in abelian
$\ell $
-towers of multigraphs. In this context, growth patterns are realized by certain analogs of Iwasawa invariants, which depend on the prime
$\ell $
and the abelian
$\ell $
-tower of multigraphs. We formulate and study statistical questions about the behavior of the Iwasawa
$\mu $
and
$\lambda $
invariants.