关于与多重图相关的IWASAWA不变量的分布

Pub Date : 2022-07-14 DOI:10.1017/nmj.2023.18
C'edric Dion, Antonio Lei, Anwesh Ray, Daniel Vallières
{"title":"关于与多重图相关的IWASAWA不变量的分布","authors":"C'edric Dion, Antonio Lei, Anwesh Ray, Daniel Vallières","doi":"10.1017/nmj.2023.18","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>Let <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000181_inline1.png\" />\n\t\t<jats:tex-math>\n$\\ell $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> be a prime number. The Iwasawa theory of multigraphs is the systematic study of growth patterns in the number of spanning trees in abelian <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000181_inline2.png\" />\n\t\t<jats:tex-math>\n$\\ell $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-towers of multigraphs. In this context, growth patterns are realized by certain analogs of Iwasawa invariants, which depend on the prime <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000181_inline3.png\" />\n\t\t<jats:tex-math>\n$\\ell $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and the abelian <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000181_inline4.png\" />\n\t\t<jats:tex-math>\n$\\ell $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-tower of multigraphs. We formulate and study statistical questions about the behavior of the Iwasawa <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000181_inline5.png\" />\n\t\t<jats:tex-math>\n$\\mu $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000181_inline6.png\" />\n\t\t<jats:tex-math>\n$\\lambda $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> invariants.</jats:p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ON THE DISTRIBUTION OF IWASAWA INVARIANTS ASSOCIATED TO MULTIGRAPHS\",\"authors\":\"C'edric Dion, Antonio Lei, Anwesh Ray, Daniel Vallières\",\"doi\":\"10.1017/nmj.2023.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>Let <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000181_inline1.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\ell $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> be a prime number. The Iwasawa theory of multigraphs is the systematic study of growth patterns in the number of spanning trees in abelian <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000181_inline2.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\ell $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-towers of multigraphs. In this context, growth patterns are realized by certain analogs of Iwasawa invariants, which depend on the prime <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000181_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\ell $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and the abelian <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000181_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\ell $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-tower of multigraphs. We formulate and study statistical questions about the behavior of the Iwasawa <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000181_inline5.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\mu $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000181_inline6.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\lambda $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> invariants.</jats:p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2023.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2023.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

设$\ell $为质数。Iwasawa多图理论是对多图的阿贝尔$\ell $ -塔中生成树数目增长模式的系统研究。在这种情况下,增长模式是通过Iwasawa不变量的某些类似物实现的,这些不变量依赖于多图的素数$\ell $和阿贝尔$\ell $ -塔。我们制定和研究关于Iwasawa $\mu $和$\lambda $不变量行为的统计问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
ON THE DISTRIBUTION OF IWASAWA INVARIANTS ASSOCIATED TO MULTIGRAPHS
Let $\ell $ be a prime number. The Iwasawa theory of multigraphs is the systematic study of growth patterns in the number of spanning trees in abelian $\ell $ -towers of multigraphs. In this context, growth patterns are realized by certain analogs of Iwasawa invariants, which depend on the prime $\ell $ and the abelian $\ell $ -tower of multigraphs. We formulate and study statistical questions about the behavior of the Iwasawa $\mu $ and $\lambda $ invariants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信