{"title":"格格林函数的渐近性质","authors":"Emmanuel Michta, G. Slade","doi":"10.30757/alea.v19-38","DOIUrl":null,"url":null,"abstract":"The lattice Green function, i.e., the resolvent of the discrete Laplace operator, is fundamental in probability theory and mathematical physics. We derive its long-distance behaviour via a detailed analysis of an integral representation involving modified Bessel functions. Our emphasis is on the decay of the massive lattice Green function in the vicinity of the massless (critical) case, and the recovery of Euclidean isotropy in the massless limit. This provides a prototype for the expected but unproven long-distance behaviour of near-critical two-point functions in statistical mechanical models such as percolation, the Ising model, and the self-avoiding walk above their upper critical dimensions.","PeriodicalId":49244,"journal":{"name":"Alea-Latin American Journal of Probability and Mathematical Statistics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Asymptotic behaviour of the lattice Green function\",\"authors\":\"Emmanuel Michta, G. Slade\",\"doi\":\"10.30757/alea.v19-38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lattice Green function, i.e., the resolvent of the discrete Laplace operator, is fundamental in probability theory and mathematical physics. We derive its long-distance behaviour via a detailed analysis of an integral representation involving modified Bessel functions. Our emphasis is on the decay of the massive lattice Green function in the vicinity of the massless (critical) case, and the recovery of Euclidean isotropy in the massless limit. This provides a prototype for the expected but unproven long-distance behaviour of near-critical two-point functions in statistical mechanical models such as percolation, the Ising model, and the self-avoiding walk above their upper critical dimensions.\",\"PeriodicalId\":49244,\"journal\":{\"name\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v19-38\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alea-Latin American Journal of Probability and Mathematical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v19-38","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Asymptotic behaviour of the lattice Green function
The lattice Green function, i.e., the resolvent of the discrete Laplace operator, is fundamental in probability theory and mathematical physics. We derive its long-distance behaviour via a detailed analysis of an integral representation involving modified Bessel functions. Our emphasis is on the decay of the massive lattice Green function in the vicinity of the massless (critical) case, and the recovery of Euclidean isotropy in the massless limit. This provides a prototype for the expected but unproven long-distance behaviour of near-critical two-point functions in statistical mechanical models such as percolation, the Ising model, and the self-avoiding walk above their upper critical dimensions.
期刊介绍:
ALEA publishes research articles in probability theory, stochastic processes, mathematical statistics, and their applications. It publishes also review articles of subjects which developed considerably in recent years. All articles submitted go through a rigorous refereeing process by peers and are published immediately after accepted.
ALEA is an electronic journal of the Latin-american probability and statistical community which provides open access to all of its content and uses only free programs. Authors are allowed to deposit their published article into their institutional repository, freely and with no embargo, as long as they acknowledge the source of the paper.
ALEA is affiliated with the Institute of Mathematical Statistics.