关于带边界上布朗运动的迹

IF 0.6 Q3 MATHEMATICS
Liping Li, Wenjie Sun
{"title":"关于带边界上布朗运动的迹","authors":"Liping Li, Wenjie Sun","doi":"10.1215/00192082-9853356","DOIUrl":null,"url":null,"abstract":"The trace of a Markov process is the time changed process of the original process on the support of the Revuz measure used in the time change. In this paper, we will concentrate on the reflecting Brownian motions on certain closed strips. On one hand, we will formulate the concrete expression of the Dirichlet forms associated with the traces of such reflecting Brownian motions on the boundary. On the other hand, the limits of these traces as the distance between the upper and lower boundaries tends to $0$ or $\\infty$ will be further obtained.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On trace of Brownian motion on the boundary of a strip\",\"authors\":\"Liping Li, Wenjie Sun\",\"doi\":\"10.1215/00192082-9853356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The trace of a Markov process is the time changed process of the original process on the support of the Revuz measure used in the time change. In this paper, we will concentrate on the reflecting Brownian motions on certain closed strips. On one hand, we will formulate the concrete expression of the Dirichlet forms associated with the traces of such reflecting Brownian motions on the boundary. On the other hand, the limits of these traces as the distance between the upper and lower boundaries tends to $0$ or $\\\\infty$ will be further obtained.\",\"PeriodicalId\":56298,\"journal\":{\"name\":\"Illinois Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Illinois Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-9853356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-9853356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

马尔可夫过程的轨迹是原始过程在时间变化中所使用的Revuz测度支持下的时间变化过程。在本文中,我们将集中讨论在某些闭合带上的反射布朗运动。一方面,我们将表述与这种反映布朗运动在边界上的轨迹有关的狄利克雷形式的具体表达式。另一方面,当上下边界之间的距离趋于$0$或$\infty$时,将进一步得到这些迹线的极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On trace of Brownian motion on the boundary of a strip
The trace of a Markov process is the time changed process of the original process on the support of the Revuz measure used in the time change. In this paper, we will concentrate on the reflecting Brownian motions on certain closed strips. On one hand, we will formulate the concrete expression of the Dirichlet forms associated with the traces of such reflecting Brownian motions on the boundary. On the other hand, the limits of these traces as the distance between the upper and lower boundaries tends to $0$ or $\infty$ will be further obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信