{"title":"蚂蚁的耐热性:变异的方法、假设和来源综述","authors":"Karl A. Roeder, Diane V. Roeder, J. Bujan","doi":"10.1093/aesa/saab018","DOIUrl":null,"url":null,"abstract":"Abstract Ants (Hymenoptera: Formicidae) are a conspicuous group of ectotherms whose behavior, distribution, physiology, and fitness are regulated by temperature. Consequently, interest in traits like thermal tolerance that enable ants to survive and thrive in variable climates has increased exponentially over the past few decades. Here, we synthesize the published literature on the thermal tolerance of ants. We begin our review with discussion of common metrics: critical thermal limits, lethal thermal limits, knock-down resistance, chill-coma recovery, and supercooling. In particular, we highlight the ways each thermal metric is quantified and offer a set of methodological caveats for consideration. We next describe patterns and hypotheses for ant thermal tolerance along spatial and temporal temperature gradients. Spatially, we focus on relationships with latitude, elevation, urbanization, and microclimate. Temporally, we focus on seasonal plasticity, daily variation, dominance-thermal tolerance tradeoffs, and acclimation. We further discuss other sources of variation including evolutionary history, body size, age, castes, and nutrition. Finally, we highlight several topics of interest to ant thermal biologists, ranging in scope from methods development to the impacts of climate change.","PeriodicalId":8076,"journal":{"name":"Annals of The Entomological Society of America","volume":"114 1","pages":"459 - 469"},"PeriodicalIF":3.0000,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/aesa/saab018","citationCount":"33","resultStr":"{\"title\":\"Ant Thermal Tolerance: A Review of Methods, Hypotheses, and Sources of Variation\",\"authors\":\"Karl A. Roeder, Diane V. Roeder, J. Bujan\",\"doi\":\"10.1093/aesa/saab018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Ants (Hymenoptera: Formicidae) are a conspicuous group of ectotherms whose behavior, distribution, physiology, and fitness are regulated by temperature. Consequently, interest in traits like thermal tolerance that enable ants to survive and thrive in variable climates has increased exponentially over the past few decades. Here, we synthesize the published literature on the thermal tolerance of ants. We begin our review with discussion of common metrics: critical thermal limits, lethal thermal limits, knock-down resistance, chill-coma recovery, and supercooling. In particular, we highlight the ways each thermal metric is quantified and offer a set of methodological caveats for consideration. We next describe patterns and hypotheses for ant thermal tolerance along spatial and temporal temperature gradients. Spatially, we focus on relationships with latitude, elevation, urbanization, and microclimate. Temporally, we focus on seasonal plasticity, daily variation, dominance-thermal tolerance tradeoffs, and acclimation. We further discuss other sources of variation including evolutionary history, body size, age, castes, and nutrition. Finally, we highlight several topics of interest to ant thermal biologists, ranging in scope from methods development to the impacts of climate change.\",\"PeriodicalId\":8076,\"journal\":{\"name\":\"Annals of The Entomological Society of America\",\"volume\":\"114 1\",\"pages\":\"459 - 469\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2021-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/aesa/saab018\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of The Entomological Society of America\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/aesa/saab018\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of The Entomological Society of America","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/aesa/saab018","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Ant Thermal Tolerance: A Review of Methods, Hypotheses, and Sources of Variation
Abstract Ants (Hymenoptera: Formicidae) are a conspicuous group of ectotherms whose behavior, distribution, physiology, and fitness are regulated by temperature. Consequently, interest in traits like thermal tolerance that enable ants to survive and thrive in variable climates has increased exponentially over the past few decades. Here, we synthesize the published literature on the thermal tolerance of ants. We begin our review with discussion of common metrics: critical thermal limits, lethal thermal limits, knock-down resistance, chill-coma recovery, and supercooling. In particular, we highlight the ways each thermal metric is quantified and offer a set of methodological caveats for consideration. We next describe patterns and hypotheses for ant thermal tolerance along spatial and temporal temperature gradients. Spatially, we focus on relationships with latitude, elevation, urbanization, and microclimate. Temporally, we focus on seasonal plasticity, daily variation, dominance-thermal tolerance tradeoffs, and acclimation. We further discuss other sources of variation including evolutionary history, body size, age, castes, and nutrition. Finally, we highlight several topics of interest to ant thermal biologists, ranging in scope from methods development to the impacts of climate change.
期刊介绍:
The Annals of the Entomological Society of America exists to stimulate interdisciplinary dialogue across the entomological disciplines and to advance cooperative interaction among diverse groups of entomologists. It seeks to attract and publish cutting-edge research, reviews, collections of articles on a common topic of broad interest, and discussion of topics with national or international importance. We especially welcome articles covering developing areas of research, controversial issues or debate, and topics of importance to society. Manuscripts that are primarily reports of new species, methodology, pest management, or the biology of single species generally will be referred to other journals of the ESA. The most important criteria for acceptance are quality of work and breadth of interest to the readership.