鲍尔同余的一个推广

Pub Date : 2021-09-01 DOI:10.3836/tjm/1502179350
Boaz Cohen
{"title":"鲍尔同余的一个推广","authors":"Boaz Cohen","doi":"10.3836/tjm/1502179350","DOIUrl":null,"url":null,"abstract":"In this paper we generalize Bauer's Identical Congruence appearing in Hardy and Wright's book [6], Theorems 126 and 127. Bauer's Identical Congruence asserts that the polynomial $\\prod_t(x-t)$, where the product runs over a reduced residue system modulo a prime power $p^a$, is congruent (mod $p^a$) to the “simple” polynomial $(x^{p-1}-1)^{p^{a-1}}$ if $p>2$ and $(x^2-1)^{2^{a-2}}$ if $p=2$ and $a\\geqslant2$. Our article generalizes these results to a broader context, in which we find a “simple” form of the polynomial $\\prod_t(x-t)$, where the product runs over the solutions of the congruence $t^n\\equiv 1\\pmod{\\mathrm{P}^a}$ in the framework of the ring of algebraic integers of a given number field $\\mathbb{K}$, and where $\\mathrm{P}$ is a prime ideal.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generalization of Bauer's Identical Congruence\",\"authors\":\"Boaz Cohen\",\"doi\":\"10.3836/tjm/1502179350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we generalize Bauer's Identical Congruence appearing in Hardy and Wright's book [6], Theorems 126 and 127. Bauer's Identical Congruence asserts that the polynomial $\\\\prod_t(x-t)$, where the product runs over a reduced residue system modulo a prime power $p^a$, is congruent (mod $p^a$) to the “simple” polynomial $(x^{p-1}-1)^{p^{a-1}}$ if $p>2$ and $(x^2-1)^{2^{a-2}}$ if $p=2$ and $a\\\\geqslant2$. Our article generalizes these results to a broader context, in which we find a “simple” form of the polynomial $\\\\prod_t(x-t)$, where the product runs over the solutions of the congruence $t^n\\\\equiv 1\\\\pmod{\\\\mathrm{P}^a}$ in the framework of the ring of algebraic integers of a given number field $\\\\mathbb{K}$, and where $\\\\mathrm{P}$ is a prime ideal.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3836/tjm/1502179350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3836/tjm/1502179350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文推广了出现在Hardy和Wright的著作[6],定理126和127中的Bauer同同余。Bauer的相同同余断言多项式$\prod_t(x-t)$,其中乘积在模a素数幂$p^a$的降余系统上运行,与“简单”多项式$(x^{p-1}-1)^{p^{a-1}}$如果$p>2$和$(x^2-1)^{2^{a-2}}$如果$p=2$和$a\geqslant2$。我们的文章将这些结果推广到一个更广泛的上下文中,在这个上下文中,我们找到了多项式$\prod_t(x-t)$的一个“简单”形式,其中乘积在给定数域$\mathbb{K}$的代数整数环的框架中的同余$t^n\equi1\pmod{\mathrm{P}^a}$的解上运行,并且其中$\mathrm{P}$是素数理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A Generalization of Bauer's Identical Congruence
In this paper we generalize Bauer's Identical Congruence appearing in Hardy and Wright's book [6], Theorems 126 and 127. Bauer's Identical Congruence asserts that the polynomial $\prod_t(x-t)$, where the product runs over a reduced residue system modulo a prime power $p^a$, is congruent (mod $p^a$) to the “simple” polynomial $(x^{p-1}-1)^{p^{a-1}}$ if $p>2$ and $(x^2-1)^{2^{a-2}}$ if $p=2$ and $a\geqslant2$. Our article generalizes these results to a broader context, in which we find a “simple” form of the polynomial $\prod_t(x-t)$, where the product runs over the solutions of the congruence $t^n\equiv 1\pmod{\mathrm{P}^a}$ in the framework of the ring of algebraic integers of a given number field $\mathbb{K}$, and where $\mathrm{P}$ is a prime ideal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信