第五次painlevÉ超越的椭圆渐近表示

Pub Date : 2020-12-14 DOI:10.2206/kyushujm.76.43
S. Shimomura
{"title":"第五次painlevÉ超越的椭圆渐近表示","authors":"S. Shimomura","doi":"10.2206/kyushujm.76.43","DOIUrl":null,"url":null,"abstract":"For the fifth Painleve transcendents an asymptotic representation by the Jacobi $\\mathrm{sn}$-function is presented in cheese-like strips along generic directions near the point at infinity. Its elliptic main part depends on a single integration constant, which is the phase shift and is parametrised by monodromy data for the associated isomonodromy deformation. In addition, under a certain supposition, the error term is also expressed by an explicit asymptotic formula, whose leading term is written in terms of integrals of the $\\mathrm{sn}$-function and the $\\vartheta$-function, and contains the other integration constant. Instead of the justification scheme for asymptotic solutions of Riemann-Hilbert problems by the Brouwer fixed point theorem, we begin with a boundedness property of a Lagrangian function, which enables us to determine the modulus of the $\\mathrm{sn}$-function satisfying the Boutroux equations and to construct deductively the elliptic representation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ELLIPTIC ASYMPTOTIC REPRESENTATION OF THE FIFTH PAINLEVÉ TRANSCENDENTS\",\"authors\":\"S. Shimomura\",\"doi\":\"10.2206/kyushujm.76.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the fifth Painleve transcendents an asymptotic representation by the Jacobi $\\\\mathrm{sn}$-function is presented in cheese-like strips along generic directions near the point at infinity. Its elliptic main part depends on a single integration constant, which is the phase shift and is parametrised by monodromy data for the associated isomonodromy deformation. In addition, under a certain supposition, the error term is also expressed by an explicit asymptotic formula, whose leading term is written in terms of integrals of the $\\\\mathrm{sn}$-function and the $\\\\vartheta$-function, and contains the other integration constant. Instead of the justification scheme for asymptotic solutions of Riemann-Hilbert problems by the Brouwer fixed point theorem, we begin with a boundedness property of a Lagrangian function, which enables us to determine the modulus of the $\\\\mathrm{sn}$-function satisfying the Boutroux equations and to construct deductively the elliptic representation.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.76.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.76.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

对于第五个Painleve超验,Jacobi$\mathrm{sn}$-函数的渐近表示是在无穷远点附近沿着一般方向以奶酪状条表示的。它的椭圆主要部分取决于一个积分常数,该积分常数是相移,并由相关等单调变形的单调数据参数化。此外,在一定假设下,误差项也用一个显式渐近公式表示,其前导项用$\mathrm{sn}$-函数和$\vartheta$-函数的积分表示,并包含另一个积分常数。我们从拉格朗日函数的有界性开始,而不是用Brouwer不动点定理来证明Riemann-Hilbert问题渐近解的正当性,这使我们能够确定满足Bouroux方程的$\mathrm{sn}$函数的模,并推导地构造椭圆表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
ELLIPTIC ASYMPTOTIC REPRESENTATION OF THE FIFTH PAINLEVÉ TRANSCENDENTS
For the fifth Painleve transcendents an asymptotic representation by the Jacobi $\mathrm{sn}$-function is presented in cheese-like strips along generic directions near the point at infinity. Its elliptic main part depends on a single integration constant, which is the phase shift and is parametrised by monodromy data for the associated isomonodromy deformation. In addition, under a certain supposition, the error term is also expressed by an explicit asymptotic formula, whose leading term is written in terms of integrals of the $\mathrm{sn}$-function and the $\vartheta$-function, and contains the other integration constant. Instead of the justification scheme for asymptotic solutions of Riemann-Hilbert problems by the Brouwer fixed point theorem, we begin with a boundedness property of a Lagrangian function, which enables us to determine the modulus of the $\mathrm{sn}$-function satisfying the Boutroux equations and to construct deductively the elliptic representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信