{"title":"第五次painlevÉ超越的椭圆渐近表示","authors":"S. Shimomura","doi":"10.2206/kyushujm.76.43","DOIUrl":null,"url":null,"abstract":"For the fifth Painleve transcendents an asymptotic representation by the Jacobi $\\mathrm{sn}$-function is presented in cheese-like strips along generic directions near the point at infinity. Its elliptic main part depends on a single integration constant, which is the phase shift and is parametrised by monodromy data for the associated isomonodromy deformation. In addition, under a certain supposition, the error term is also expressed by an explicit asymptotic formula, whose leading term is written in terms of integrals of the $\\mathrm{sn}$-function and the $\\vartheta$-function, and contains the other integration constant. Instead of the justification scheme for asymptotic solutions of Riemann-Hilbert problems by the Brouwer fixed point theorem, we begin with a boundedness property of a Lagrangian function, which enables us to determine the modulus of the $\\mathrm{sn}$-function satisfying the Boutroux equations and to construct deductively the elliptic representation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ELLIPTIC ASYMPTOTIC REPRESENTATION OF THE FIFTH PAINLEVÉ TRANSCENDENTS\",\"authors\":\"S. Shimomura\",\"doi\":\"10.2206/kyushujm.76.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the fifth Painleve transcendents an asymptotic representation by the Jacobi $\\\\mathrm{sn}$-function is presented in cheese-like strips along generic directions near the point at infinity. Its elliptic main part depends on a single integration constant, which is the phase shift and is parametrised by monodromy data for the associated isomonodromy deformation. In addition, under a certain supposition, the error term is also expressed by an explicit asymptotic formula, whose leading term is written in terms of integrals of the $\\\\mathrm{sn}$-function and the $\\\\vartheta$-function, and contains the other integration constant. Instead of the justification scheme for asymptotic solutions of Riemann-Hilbert problems by the Brouwer fixed point theorem, we begin with a boundedness property of a Lagrangian function, which enables us to determine the modulus of the $\\\\mathrm{sn}$-function satisfying the Boutroux equations and to construct deductively the elliptic representation.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.76.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.76.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ELLIPTIC ASYMPTOTIC REPRESENTATION OF THE FIFTH PAINLEVÉ TRANSCENDENTS
For the fifth Painleve transcendents an asymptotic representation by the Jacobi $\mathrm{sn}$-function is presented in cheese-like strips along generic directions near the point at infinity. Its elliptic main part depends on a single integration constant, which is the phase shift and is parametrised by monodromy data for the associated isomonodromy deformation. In addition, under a certain supposition, the error term is also expressed by an explicit asymptotic formula, whose leading term is written in terms of integrals of the $\mathrm{sn}$-function and the $\vartheta$-function, and contains the other integration constant. Instead of the justification scheme for asymptotic solutions of Riemann-Hilbert problems by the Brouwer fixed point theorem, we begin with a boundedness property of a Lagrangian function, which enables us to determine the modulus of the $\mathrm{sn}$-function satisfying the Boutroux equations and to construct deductively the elliptic representation.