存在背景风险的分布式鲁棒目标达成优化

IF 1.4 Q3 BUSINESS, FINANCE
Yichun Chi, Z. Xu, S. Zhuang
{"title":"存在背景风险的分布式鲁棒目标达成优化","authors":"Yichun Chi, Z. Xu, S. Zhuang","doi":"10.1080/10920277.2021.1966805","DOIUrl":null,"url":null,"abstract":"In this article, we examine the effect of background risk on portfolio selection and optimal reinsurance design under the criterion of maximizing the probability of reaching a goal. Following the literature, we adopt dependence uncertainty to model the dependence ambiguity between financial risk (or insurable risk) and background risk. Because the goal-reaching objective function is nonconcave, these two problems bring highly unconventional and challenging issues for which classical optimization techniques often fail. Using a quantile formulation method, we derive the optimal solutions explicitly. The results show that the presence of background risk does not alter the shape of the solution but instead changes the parameter value of the solution. Finally, numerical examples are given to illustrate the results and verify the robustness of our solutions.","PeriodicalId":46812,"journal":{"name":"North American Actuarial Journal","volume":"26 1","pages":"351 - 382"},"PeriodicalIF":1.4000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Distributionally Robust Goal-Reaching Optimization in the Presence of Background Risk\",\"authors\":\"Yichun Chi, Z. Xu, S. Zhuang\",\"doi\":\"10.1080/10920277.2021.1966805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we examine the effect of background risk on portfolio selection and optimal reinsurance design under the criterion of maximizing the probability of reaching a goal. Following the literature, we adopt dependence uncertainty to model the dependence ambiguity between financial risk (or insurable risk) and background risk. Because the goal-reaching objective function is nonconcave, these two problems bring highly unconventional and challenging issues for which classical optimization techniques often fail. Using a quantile formulation method, we derive the optimal solutions explicitly. The results show that the presence of background risk does not alter the shape of the solution but instead changes the parameter value of the solution. Finally, numerical examples are given to illustrate the results and verify the robustness of our solutions.\",\"PeriodicalId\":46812,\"journal\":{\"name\":\"North American Actuarial Journal\",\"volume\":\"26 1\",\"pages\":\"351 - 382\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"North American Actuarial Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10920277.2021.1966805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Actuarial Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10920277.2021.1966805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们考察了在达到目标的概率最大化的标准下,背景风险对投资组合选择和最优再保险设计的影响。根据文献,我们采用依赖不确定性来建模金融风险(或可保风险)和背景风险之间的依赖模糊性。由于达到目标的目标函数是不收敛的,这两个问题带来了非常规和具有挑战性的问题,而经典优化技术往往无法解决这些问题。使用分位数公式方法,我们明确地导出了最优解。结果表明,背景风险的存在不会改变溶液的形状,而是会改变溶液的参数值。最后,给出了数值算例来说明结果,并验证了我们的解的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributionally Robust Goal-Reaching Optimization in the Presence of Background Risk
In this article, we examine the effect of background risk on portfolio selection and optimal reinsurance design under the criterion of maximizing the probability of reaching a goal. Following the literature, we adopt dependence uncertainty to model the dependence ambiguity between financial risk (or insurable risk) and background risk. Because the goal-reaching objective function is nonconcave, these two problems bring highly unconventional and challenging issues for which classical optimization techniques often fail. Using a quantile formulation method, we derive the optimal solutions explicitly. The results show that the presence of background risk does not alter the shape of the solution but instead changes the parameter value of the solution. Finally, numerical examples are given to illustrate the results and verify the robustness of our solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
14.30%
发文量
38
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信