{"title":"有向双环图的谱范数的前三个最大值","authors":"Kun Wei, Jianping Li","doi":"10.47443/dml.2023.082","DOIUrl":null,"url":null,"abstract":"Let D be a digraph with n vertices and let σ 1 ( D ) , σ 2 ( D ) , . . . , σ n ( D ) be the singular values of the adjacency matrix of D , where σ 1 ( D ) ≥ σ 2 ( D ) ≥ · · · ≥ σ n ( D ) . The spectral norm of D is σ 1 ( D ) . In this paper, we determine the orientations of graphs with the first three largest values of the spectral norm over the family of all orientations of bicyclic graphs with at least 12 vertices.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The first three largest values of the spectral norm of oriented bicyclic graphs\",\"authors\":\"Kun Wei, Jianping Li\",\"doi\":\"10.47443/dml.2023.082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let D be a digraph with n vertices and let σ 1 ( D ) , σ 2 ( D ) , . . . , σ n ( D ) be the singular values of the adjacency matrix of D , where σ 1 ( D ) ≥ σ 2 ( D ) ≥ · · · ≥ σ n ( D ) . The spectral norm of D is σ 1 ( D ) . In this paper, we determine the orientations of graphs with the first three largest values of the spectral norm over the family of all orientations of bicyclic graphs with at least 12 vertices.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2023.082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2023.082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设D是一个有向图,有n个顶点,设σ 1 (D), σ 2 (D),…, σ n (D)为D的邻接矩阵的奇异值,其中σ 1 (D)≥σ 2 (D)≥···≥σ n (D)。D的谱范数为σ 1 (D)。在至少有12个顶点的双环图的所有方向族上,我们确定了谱范数前三个最大值的图的方向。
The first three largest values of the spectral norm of oriented bicyclic graphs
Let D be a digraph with n vertices and let σ 1 ( D ) , σ 2 ( D ) , . . . , σ n ( D ) be the singular values of the adjacency matrix of D , where σ 1 ( D ) ≥ σ 2 ( D ) ≥ · · · ≥ σ n ( D ) . The spectral norm of D is σ 1 ( D ) . In this paper, we determine the orientations of graphs with the first three largest values of the spectral norm over the family of all orientations of bicyclic graphs with at least 12 vertices.