具有随机分割Hawkes到达过程的并行单服务器队列的重流量限制

Pub Date : 2023-08-07 DOI:10.1017/jpr.2023.50
Bo Li, G. Pang
{"title":"具有随机分割Hawkes到达过程的并行单服务器队列的重流量限制","authors":"Bo Li, G. Pang","doi":"10.1017/jpr.2023.50","DOIUrl":null,"url":null,"abstract":"\n We consider parallel single-server queues in heavy traffic with randomly split Hawkes arrival processes. The service times are assumed to be independent and identically distributed (i.i.d.) in each queue and are independent in different queues. In the critically loaded regime at each queue, it is shown that the diffusion-scaled queueing and workload processes converge to a multidimensional reflected Brownian motion in the non-negative orthant with orthonormal reflections. For the model with abandonment, we also show that the corresponding limit is a multidimensional reflected Ornstein–Uhlenbeck diffusion in the non-negative orthant.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heavy-traffic limits for parallel single-server queues with randomly split Hawkes arrival processes\",\"authors\":\"Bo Li, G. Pang\",\"doi\":\"10.1017/jpr.2023.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We consider parallel single-server queues in heavy traffic with randomly split Hawkes arrival processes. The service times are assumed to be independent and identically distributed (i.i.d.) in each queue and are independent in different queues. In the critically loaded regime at each queue, it is shown that the diffusion-scaled queueing and workload processes converge to a multidimensional reflected Brownian motion in the non-negative orthant with orthonormal reflections. For the model with abandonment, we also show that the corresponding limit is a multidimensional reflected Ornstein–Uhlenbeck diffusion in the non-negative orthant.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/jpr.2023.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2023.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了在具有随机分裂霍克斯到达过程的繁忙流量中的并行单服务器队列。假设服务时间在每个队列中是独立和相同分布的(i.i.d.),并且在不同的队列中是相互独立的。在每个队列的临界负载状态下,表明扩散规模的排队和工作负载过程在具有正交反射的非负方向上收敛为多维反射布朗运动。对于具有放弃的模型,我们还证明了相应的极限是非负orthant中的多维反射Ornstein–Uhlenbeck扩散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Heavy-traffic limits for parallel single-server queues with randomly split Hawkes arrival processes
We consider parallel single-server queues in heavy traffic with randomly split Hawkes arrival processes. The service times are assumed to be independent and identically distributed (i.i.d.) in each queue and are independent in different queues. In the critically loaded regime at each queue, it is shown that the diffusion-scaled queueing and workload processes converge to a multidimensional reflected Brownian motion in the non-negative orthant with orthonormal reflections. For the model with abandonment, we also show that the corresponding limit is a multidimensional reflected Ornstein–Uhlenbeck diffusion in the non-negative orthant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信