F. Karim, Mohammed Ali Armin, David Ahmedt-Aristizabal, Lachlan Tychsen-Smith, Lars Petersson
{"title":"洪水淹没模型的水动力和机器学习方法综述","authors":"F. Karim, Mohammed Ali Armin, David Ahmedt-Aristizabal, Lachlan Tychsen-Smith, Lars Petersson","doi":"10.3390/w15030566","DOIUrl":null,"url":null,"abstract":"Machine learning (also called data-driven) methods have become popular in modeling flood inundations across river basins. Among data-driven methods, traditional machine learning (ML) approaches are widely used to model flood events, and recently deep learning (DL) approaches have gained more attention across the world. In this paper, we reviewed recently published literature on ML and DL applications for flood modeling for various hydrologic and catchment characteristics. Our extensive literature review shows that DL models produce better accuracy compared to traditional approaches. Unlike physically based models, ML/DL models suffer from the lack of using expert knowledge in modeling flood events. Apart from challenges in implementing a uniform modeling approach across river basins, the lack of benchmark data to evaluate model performance is a limiting factor for developing efficient ML/DL models for flood inundation modeling.","PeriodicalId":23788,"journal":{"name":"Water","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A Review of Hydrodynamic and Machine Learning Approaches for Flood Inundation Modeling\",\"authors\":\"F. Karim, Mohammed Ali Armin, David Ahmedt-Aristizabal, Lachlan Tychsen-Smith, Lars Petersson\",\"doi\":\"10.3390/w15030566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning (also called data-driven) methods have become popular in modeling flood inundations across river basins. Among data-driven methods, traditional machine learning (ML) approaches are widely used to model flood events, and recently deep learning (DL) approaches have gained more attention across the world. In this paper, we reviewed recently published literature on ML and DL applications for flood modeling for various hydrologic and catchment characteristics. Our extensive literature review shows that DL models produce better accuracy compared to traditional approaches. Unlike physically based models, ML/DL models suffer from the lack of using expert knowledge in modeling flood events. Apart from challenges in implementing a uniform modeling approach across river basins, the lack of benchmark data to evaluate model performance is a limiting factor for developing efficient ML/DL models for flood inundation modeling.\",\"PeriodicalId\":23788,\"journal\":{\"name\":\"Water\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/w15030566\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w15030566","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A Review of Hydrodynamic and Machine Learning Approaches for Flood Inundation Modeling
Machine learning (also called data-driven) methods have become popular in modeling flood inundations across river basins. Among data-driven methods, traditional machine learning (ML) approaches are widely used to model flood events, and recently deep learning (DL) approaches have gained more attention across the world. In this paper, we reviewed recently published literature on ML and DL applications for flood modeling for various hydrologic and catchment characteristics. Our extensive literature review shows that DL models produce better accuracy compared to traditional approaches. Unlike physically based models, ML/DL models suffer from the lack of using expert knowledge in modeling flood events. Apart from challenges in implementing a uniform modeling approach across river basins, the lack of benchmark data to evaluate model performance is a limiting factor for developing efficient ML/DL models for flood inundation modeling.
期刊介绍:
Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.