{"title":"关于非绝对类型空间及其Köthe-Toeplitz对偶","authors":"Kuldip Raj, Seema Jamwal","doi":"10.1016/j.trmi.2017.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce and study some non-absolute type spaces <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>∞</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>λ</mi><mo>,</mo><msubsup><mrow><mi>Δ</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>)</mo></mrow></math></span>, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>λ</mi><mo>,</mo><msubsup><mrow><mi>Δ</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>)</mo></mrow></math></span> and <span><math><mi>c</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>λ</mi><mo>,</mo><msubsup><mrow><mi>Δ</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>)</mo></mrow></math></span>, which are <span><math><mstyle><mi>BK</mi></mstyle></math></span>-spaces. Moreover, we prove that these spaces are linearly isomorphic to the spaces <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><mi>c</mi></math></span>. We also make an effort to establish some inclusion relations between these spaces. Furthermore, we find the Schauder basis for these spaces and also determine the <span><math><mi>α</mi></math></span>-, <span><math><mi>β</mi></math></span>- and <span><math><mi>γ</mi></math></span>-duals of these spaces.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"171 2","pages":"Pages 212-220"},"PeriodicalIF":0.3000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2017.02.002","citationCount":"0","resultStr":"{\"title\":\"On non-absolute type spaces and their Köthe-Toeplitz duals\",\"authors\":\"Kuldip Raj, Seema Jamwal\",\"doi\":\"10.1016/j.trmi.2017.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce and study some non-absolute type spaces <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>∞</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>λ</mi><mo>,</mo><msubsup><mrow><mi>Δ</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>)</mo></mrow></math></span>, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>λ</mi><mo>,</mo><msubsup><mrow><mi>Δ</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>)</mo></mrow></math></span> and <span><math><mi>c</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>λ</mi><mo>,</mo><msubsup><mrow><mi>Δ</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>)</mo></mrow></math></span>, which are <span><math><mstyle><mi>BK</mi></mstyle></math></span>-spaces. Moreover, we prove that these spaces are linearly isomorphic to the spaces <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><mi>c</mi></math></span>. We also make an effort to establish some inclusion relations between these spaces. Furthermore, we find the Schauder basis for these spaces and also determine the <span><math><mi>α</mi></math></span>-, <span><math><mi>β</mi></math></span>- and <span><math><mi>γ</mi></math></span>-duals of these spaces.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"171 2\",\"pages\":\"Pages 212-220\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2017.02.002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2346809216301283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809216301283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On non-absolute type spaces and their Köthe-Toeplitz duals
In this paper, we introduce and study some non-absolute type spaces , and , which are -spaces. Moreover, we prove that these spaces are linearly isomorphic to the spaces and . We also make an effort to establish some inclusion relations between these spaces. Furthermore, we find the Schauder basis for these spaces and also determine the -, - and -duals of these spaces.