关于非绝对类型空间及其Köthe-Toeplitz对偶

IF 0.3 Q4 MATHEMATICS
Kuldip Raj, Seema Jamwal
{"title":"关于非绝对类型空间及其Köthe-Toeplitz对偶","authors":"Kuldip Raj,&nbsp;Seema Jamwal","doi":"10.1016/j.trmi.2017.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce and study some non-absolute type spaces <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>∞</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>λ</mi><mo>,</mo><msubsup><mrow><mi>Δ</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>)</mo></mrow></math></span>, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>λ</mi><mo>,</mo><msubsup><mrow><mi>Δ</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>)</mo></mrow></math></span> and <span><math><mi>c</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>λ</mi><mo>,</mo><msubsup><mrow><mi>Δ</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>)</mo></mrow></math></span>, which are <span><math><mstyle><mi>BK</mi></mstyle></math></span>-spaces. Moreover, we prove that these spaces are linearly isomorphic to the spaces <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><mi>c</mi></math></span>. We also make an effort to establish some inclusion relations between these spaces. Furthermore, we find the Schauder basis for these spaces and also determine the <span><math><mi>α</mi></math></span>-, <span><math><mi>β</mi></math></span>- and <span><math><mi>γ</mi></math></span>-duals of these spaces.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"171 2","pages":"Pages 212-220"},"PeriodicalIF":0.3000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2017.02.002","citationCount":"0","resultStr":"{\"title\":\"On non-absolute type spaces and their Köthe-Toeplitz duals\",\"authors\":\"Kuldip Raj,&nbsp;Seema Jamwal\",\"doi\":\"10.1016/j.trmi.2017.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce and study some non-absolute type spaces <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>∞</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>λ</mi><mo>,</mo><msubsup><mrow><mi>Δ</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>)</mo></mrow></math></span>, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>λ</mi><mo>,</mo><msubsup><mrow><mi>Δ</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>)</mo></mrow></math></span> and <span><math><mi>c</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>λ</mi><mo>,</mo><msubsup><mrow><mi>Δ</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>)</mo></mrow></math></span>, which are <span><math><mstyle><mi>BK</mi></mstyle></math></span>-spaces. Moreover, we prove that these spaces are linearly isomorphic to the spaces <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><mi>c</mi></math></span>. We also make an effort to establish some inclusion relations between these spaces. Furthermore, we find the Schauder basis for these spaces and also determine the <span><math><mi>α</mi></math></span>-, <span><math><mi>β</mi></math></span>- and <span><math><mi>γ</mi></math></span>-duals of these spaces.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"171 2\",\"pages\":\"Pages 212-220\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2017.02.002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2346809216301283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809216301283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文引入并研究了一些非绝对型空间l∞(u,λ,Δvm), c0(u,λ,Δvm)和c(u,λ,Δvm),它们是bk空间。此外,我们还证明了这些空间与空间l∞,c0和c是线性同构的,并在这些空间之间建立了一些包含关系。进一步,我们找到了这些空间的Schauder基,并确定了这些空间的α-、β-和γ-对偶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On non-absolute type spaces and their Köthe-Toeplitz duals

In this paper, we introduce and study some non-absolute type spaces l(u,λ,Δvm), c0(u,λ,Δvm) and c(u,λ,Δvm), which are BK-spaces. Moreover, we prove that these spaces are linearly isomorphic to the spaces l,c0 and c. We also make an effort to establish some inclusion relations between these spaces. Furthermore, we find the Schauder basis for these spaces and also determine the α-, β- and γ-duals of these spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
50.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信