{"title":"绝热演化与形状共振","authors":"M. Hitrik, A. Mantile, J. Sjoestrand","doi":"10.1090/memo/1380","DOIUrl":null,"url":null,"abstract":"<p>Motivated by a problem of one mode approximation for a non-linear evolution with charge accumulation in potential wells, we consider a general linear adiabatic evolution problem for a semi-classical Schrödinger operator with a time dependent potential with a well in an island. In particular, we show that we can choose the adiabatic parameter <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon\">\n <mml:semantics>\n <mml:mi>ε<!-- ε --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\varepsilon</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ln epsilon equivalent-to negative 1 slash h\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ln</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mi>ε<!-- ε --></mml:mi>\n <mml:mo>≍<!-- ≍ --></mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>h</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\ln \\varepsilon \\asymp -1/h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\">\n <mml:semantics>\n <mml:mi>h</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> denotes the semi-classical parameter, and get adiabatic approximations of exact solutions over a time interval of length <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon Superscript negative upper N\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>ε<!-- ε --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>N</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\varepsilon ^{-N}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with an error <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper O left-parenthesis epsilon Superscript upper N Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>ε<!-- ε --></mml:mi>\n <mml:mi>N</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathcal O}(\\varepsilon ^N)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Here <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>N</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">N>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is arbitrary.</p>\n\n<p>\\center <bold>Résumé</bold> \\endcenter</p>\n\n<p>Motivés par un problème d’approximation à un mode pour une évolution avec accumulation de charge dans des puits de potentiel, nous considérons un problème d’évolution linéaire pour un opérateur de Schrödinger avec un potentiel dépendant du temps avec un puits dans une île. En particular, nous montrons que nous pouvons choisir le paramètre adiabatique <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon\">\n <mml:semantics>\n <mml:mi>ε<!-- ε --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\varepsilon</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> avec <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ln epsilon equivalent-to negative 1 slash h\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ln</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mi>ε<!-- ε --></mml:mi>\n <mml:mo>≍<!-- ≍ --></mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>h</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\ln \\varepsilon \\asymp -1/h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, où <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\">\n <mml:semantics>\n <mml:mi>h</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> désigne le paramètre semi-classique, et obtenir des approximations adiabatiques de solutions exactes sur des intervalles de temps de longueur <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon Superscript negative upper N\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>ε<!-- ε --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>N</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\varepsilon ^{-N}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> avec une erreur <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper O left-parenthesis epsilon Superscript upper N Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>ε<!-- ε --></mml:mi>\n <mml:mi>N</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathcal O}(\\varepsilon ^N)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Ici <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>N</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">N>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> est arbitraire.</p>","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2017-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adiabatic Evolution and Shape Resonances\",\"authors\":\"M. Hitrik, A. Mantile, J. Sjoestrand\",\"doi\":\"10.1090/memo/1380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Motivated by a problem of one mode approximation for a non-linear evolution with charge accumulation in potential wells, we consider a general linear adiabatic evolution problem for a semi-classical Schrödinger operator with a time dependent potential with a well in an island. In particular, we show that we can choose the adiabatic parameter <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon\\\">\\n <mml:semantics>\\n <mml:mi>ε<!-- ε --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\varepsilon</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ln epsilon equivalent-to negative 1 slash h\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>ln</mml:mi>\\n <mml:mo><!-- --></mml:mo>\\n <mml:mi>ε<!-- ε --></mml:mi>\\n <mml:mo>≍<!-- ≍ --></mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mi>h</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\ln \\\\varepsilon \\\\asymp -1/h</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h\\\">\\n <mml:semantics>\\n <mml:mi>h</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">h</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> denotes the semi-classical parameter, and get adiabatic approximations of exact solutions over a time interval of length <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon Superscript negative upper N\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>ε<!-- ε --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>N</mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\varepsilon ^{-N}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with an error <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper O left-parenthesis epsilon Superscript upper N Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">O</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>ε<!-- ε --></mml:mi>\\n <mml:mi>N</mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathcal O}(\\\\varepsilon ^N)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Here <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>N</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">N>0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is arbitrary.</p>\\n\\n<p>\\\\center <bold>Résumé</bold> \\\\endcenter</p>\\n\\n<p>Motivés par un problème d’approximation à un mode pour une évolution avec accumulation de charge dans des puits de potentiel, nous considérons un problème d’évolution linéaire pour un opérateur de Schrödinger avec un potentiel dépendant du temps avec un puits dans une île. En particular, nous montrons que nous pouvons choisir le paramètre adiabatique <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon\\\">\\n <mml:semantics>\\n <mml:mi>ε<!-- ε --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\varepsilon</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> avec <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ln epsilon equivalent-to negative 1 slash h\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>ln</mml:mi>\\n <mml:mo><!-- --></mml:mo>\\n <mml:mi>ε<!-- ε --></mml:mi>\\n <mml:mo>≍<!-- ≍ --></mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mi>h</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\ln \\\\varepsilon \\\\asymp -1/h</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, où <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h\\\">\\n <mml:semantics>\\n <mml:mi>h</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">h</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> désigne le paramètre semi-classique, et obtenir des approximations adiabatiques de solutions exactes sur des intervalles de temps de longueur <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon Superscript negative upper N\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>ε<!-- ε --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>N</mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\varepsilon ^{-N}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> avec une erreur <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper O left-parenthesis epsilon Superscript upper N Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">O</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>ε<!-- ε --></mml:mi>\\n <mml:mi>N</mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathcal O}(\\\\varepsilon ^N)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Ici <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>N</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">N>0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> est arbitraire.</p>\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2017-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1380\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1380","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Motivated by a problem of one mode approximation for a non-linear evolution with charge accumulation in potential wells, we consider a general linear adiabatic evolution problem for a semi-classical Schrödinger operator with a time dependent potential with a well in an island. In particular, we show that we can choose the adiabatic parameter ε\varepsilon with lnε≍−1/h\ln \varepsilon \asymp -1/h, where hh denotes the semi-classical parameter, and get adiabatic approximations of exact solutions over a time interval of length ε−N\varepsilon ^{-N} with an error O(εN){\mathcal O}(\varepsilon ^N). Here N>0N>0 is arbitrary.
\center Résumé \endcenter
Motivés par un problème d’approximation à un mode pour une évolution avec accumulation de charge dans des puits de potentiel, nous considérons un problème d’évolution linéaire pour un opérateur de Schrödinger avec un potentiel dépendant du temps avec un puits dans une île. En particular, nous montrons que nous pouvons choisir le paramètre adiabatique ε\varepsilon avec lnε≍−1/h\ln \varepsilon \asymp -1/h, où hh désigne le paramètre semi-classique, et obtenir des approximations adiabatiques de solutions exactes sur des intervalles de temps de longueur ε−N\varepsilon ^{-N} avec une erreur O(εN){\mathcal O}(\varepsilon ^N). Ici N>0N>0 est arbitraire.
期刊介绍:
Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.