关于第二类Stirling数的一个公式及其在发育复射影空间的不稳定K理论中的应用

IF 0.5 4区 数学 Q3 MATHEMATICS
O. Nishimura
{"title":"关于第二类Stirling数的一个公式及其在发育复射影空间的不稳定K理论中的应用","authors":"O. Nishimura","doi":"10.1215/21562261-2022-0026","DOIUrl":null,"url":null,"abstract":"A formula on Stirling numbers of the second kind $S(n, k)$ is proved. As a corollary, for odd $n$ and even $k$, it is shown that $k!S(n, k)$ is a positive multiple of the greatest common divisor of $j!S(n, j)$ for $k+1\\leq j\\leq n$. Also, as an application to algebraic topology, some isomorphisms of unstable $K^1$-groups of stunted complex projective spaces are deduced.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A formula on Stirling numbers of the second kind and its application to the unstable K-theory of stunted complex projective spaces\",\"authors\":\"O. Nishimura\",\"doi\":\"10.1215/21562261-2022-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A formula on Stirling numbers of the second kind $S(n, k)$ is proved. As a corollary, for odd $n$ and even $k$, it is shown that $k!S(n, k)$ is a positive multiple of the greatest common divisor of $j!S(n, j)$ for $k+1\\\\leq j\\\\leq n$. Also, as an application to algebraic topology, some isomorphisms of unstable $K^1$-groups of stunted complex projective spaces are deduced.\",\"PeriodicalId\":49149,\"journal\":{\"name\":\"Kyoto Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyoto Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-2022-0026\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2022-0026","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了第二类斯特林数的一个公式$S(n, k)$。作为推论,对于奇数$n$和偶数$k$,表明$k!S(n, k)$是$k+1\leq j\leq n$的最大公约数$j!S(n, j)$的正倍数。同时,作为代数拓扑的应用,导出了发育不良复射影空间中不稳定$K^1$ -群的一些同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A formula on Stirling numbers of the second kind and its application to the unstable K-theory of stunted complex projective spaces
A formula on Stirling numbers of the second kind $S(n, k)$ is proved. As a corollary, for odd $n$ and even $k$, it is shown that $k!S(n, k)$ is a positive multiple of the greatest common divisor of $j!S(n, j)$ for $k+1\leq j\leq n$. Also, as an application to algebraic topology, some isomorphisms of unstable $K^1$-groups of stunted complex projective spaces are deduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信