{"title":"从里程计到圆形系统:一个全局结构定理","authors":"M. Foreman, B. Weiss","doi":"10.3934/jmd.2019024","DOIUrl":null,"url":null,"abstract":"The main result of this paper is that two large collections of ergodic measure preserving systems, the Odometer Based and the Circular Systems have the same global structure with respect to joinings. The classes are canonically isomorphic by a continuous map that takes factor maps to factor maps, measure-isomorphisms to measure-isomorphisms, weakly mixing extensions to weakly mixing extensions and compact extensions to compact extensions. The first class includes all finite entropy ergodic transformations with an odometer factor. By results in a previous paper, the second class contains all transformations realizable as diffeomorphisms using the strongly uniform untwisted Anosov-Katok method. An application of the main result will appear in a forthcoming paper that shows that the diffeomorphisms of the torus are inherently unclassifiable up to measure-isomorphism. Other consequences include the existence measure distal diffeomorphisms of arbitrary countable distal height.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2017-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"From odometers to circular systems: A global structure theorem\",\"authors\":\"M. Foreman, B. Weiss\",\"doi\":\"10.3934/jmd.2019024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main result of this paper is that two large collections of ergodic measure preserving systems, the Odometer Based and the Circular Systems have the same global structure with respect to joinings. The classes are canonically isomorphic by a continuous map that takes factor maps to factor maps, measure-isomorphisms to measure-isomorphisms, weakly mixing extensions to weakly mixing extensions and compact extensions to compact extensions. The first class includes all finite entropy ergodic transformations with an odometer factor. By results in a previous paper, the second class contains all transformations realizable as diffeomorphisms using the strongly uniform untwisted Anosov-Katok method. An application of the main result will appear in a forthcoming paper that shows that the diffeomorphisms of the torus are inherently unclassifiable up to measure-isomorphism. Other consequences include the existence measure distal diffeomorphisms of arbitrary countable distal height.\",\"PeriodicalId\":51087,\"journal\":{\"name\":\"Journal of Modern Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jmd.2019024\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2019024","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
From odometers to circular systems: A global structure theorem
The main result of this paper is that two large collections of ergodic measure preserving systems, the Odometer Based and the Circular Systems have the same global structure with respect to joinings. The classes are canonically isomorphic by a continuous map that takes factor maps to factor maps, measure-isomorphisms to measure-isomorphisms, weakly mixing extensions to weakly mixing extensions and compact extensions to compact extensions. The first class includes all finite entropy ergodic transformations with an odometer factor. By results in a previous paper, the second class contains all transformations realizable as diffeomorphisms using the strongly uniform untwisted Anosov-Katok method. An application of the main result will appear in a forthcoming paper that shows that the diffeomorphisms of the torus are inherently unclassifiable up to measure-isomorphism. Other consequences include the existence measure distal diffeomorphisms of arbitrary countable distal height.
期刊介绍:
The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including:
Number theory
Symplectic geometry
Differential geometry
Rigidity
Quantum chaos
Teichmüller theory
Geometric group theory
Harmonic analysis on manifolds.
The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.