混凝土实心砌块与不同复合材料实心砌块的比较

IF 1 Q4 MATERIALS SCIENCE, COMPOSITES
E. Karash, Tymor Abed Alsttar Sediqer, Mohammad Takey Elias Kassim
{"title":"混凝土实心砌块与不同复合材料实心砌块的比较","authors":"E. Karash, Tymor Abed Alsttar Sediqer, Mohammad Takey Elias Kassim","doi":"10.18280/rcma.310605","DOIUrl":null,"url":null,"abstract":"In this research, three mathematical models were designed, the first consisting of concrete, the second from carbon fiber, and the third from s-glass fiber, in order to compare the strength of composite materials to different stresses and deformations, because composite materials are better than concrete in terms of weight and shape and do not need to be applied to painting operations in addition to the fact that their thermal insulation is higher than Concrete in high proportions. From the results of the comparison, it was found that the second model was the best model in terms of bearing deformations, as the deformation percentage in it did not exceed the deformation of concrete a lot, reaching (17%), which is a very small percentage, and the stresses towards pregnancy for the second and third models were much better than the bearing of the first model, but the results indicate that the Von Mises Stress in the second model is higher than the first model by a percentage (57%), while the comparison of the third model with the first was the rate of increase percentage (47%).","PeriodicalId":42458,"journal":{"name":"Revue des Composites et des Materiaux Avances-Journal of Composite and Advanced Materials","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Comparison Between a Solid Block Made of Concrete and Others Made of Different Composite Materials\",\"authors\":\"E. Karash, Tymor Abed Alsttar Sediqer, Mohammad Takey Elias Kassim\",\"doi\":\"10.18280/rcma.310605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, three mathematical models were designed, the first consisting of concrete, the second from carbon fiber, and the third from s-glass fiber, in order to compare the strength of composite materials to different stresses and deformations, because composite materials are better than concrete in terms of weight and shape and do not need to be applied to painting operations in addition to the fact that their thermal insulation is higher than Concrete in high proportions. From the results of the comparison, it was found that the second model was the best model in terms of bearing deformations, as the deformation percentage in it did not exceed the deformation of concrete a lot, reaching (17%), which is a very small percentage, and the stresses towards pregnancy for the second and third models were much better than the bearing of the first model, but the results indicate that the Von Mises Stress in the second model is higher than the first model by a percentage (57%), while the comparison of the third model with the first was the rate of increase percentage (47%).\",\"PeriodicalId\":42458,\"journal\":{\"name\":\"Revue des Composites et des Materiaux Avances-Journal of Composite and Advanced Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revue des Composites et des Materiaux Avances-Journal of Composite and Advanced Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18280/rcma.310605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue des Composites et des Materiaux Avances-Journal of Composite and Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/rcma.310605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 4

摘要

在本研究中,为了比较复合材料在不同应力和变形下的强度,设计了三个数学模型,第一个由混凝土组成,第二个由碳纤维组成,第三个由s-玻璃纤维组成,因为复合材料在重量和形状上都比混凝土好,不需要涂漆操作,而且它们的保温性比混凝土高。对比结果发现,在承载变形方面,第二个模型是最好的模型,其变形百分比并没有超过混凝土的变形很多,达到17%,这是一个很小的百分比,并且第二个和第三个模型的妊娠应力比第一个模型的承载要好得多。但结果表明,第二种模型的Von Mises应力比第一种模型高一个百分比(57%),而第三种模型与第一种模型的比较是增加百分比(47%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison Between a Solid Block Made of Concrete and Others Made of Different Composite Materials
In this research, three mathematical models were designed, the first consisting of concrete, the second from carbon fiber, and the third from s-glass fiber, in order to compare the strength of composite materials to different stresses and deformations, because composite materials are better than concrete in terms of weight and shape and do not need to be applied to painting operations in addition to the fact that their thermal insulation is higher than Concrete in high proportions. From the results of the comparison, it was found that the second model was the best model in terms of bearing deformations, as the deformation percentage in it did not exceed the deformation of concrete a lot, reaching (17%), which is a very small percentage, and the stresses towards pregnancy for the second and third models were much better than the bearing of the first model, but the results indicate that the Von Mises Stress in the second model is higher than the first model by a percentage (57%), while the comparison of the third model with the first was the rate of increase percentage (47%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
25.00%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信