使用数据包络分析、田口损失函数和MOPSO混合方法的简单线性轮廓的有效经济统计设计

Q2 Engineering
Maryam Fazelimoghadam, M. Ershadi, S. T. A. Niaki
{"title":"使用数据包络分析、田口损失函数和MOPSO混合方法的简单线性轮廓的有效经济统计设计","authors":"Maryam Fazelimoghadam, M. Ershadi, S. T. A. Niaki","doi":"10.22094/JOIE.2019.580054.1607","DOIUrl":null,"url":null,"abstract":"Statistically constrained economic design for profiles usually refers to the selection of some parameters such as the sample size, sampling interval, smoothing constant, and control limit for minimizing the total implementation cost while the designed profiles demonstrate a proper statistical performance. In this paper, the Lorenzen-Vance function is first used to model the implementation costs. Then, this function is extended by the Taguchi loss function to involve intangible costs. Next, a multi-objective particle swarm optimization (MOPSO) method is employed to optimize the extended model. The parameters of the MOPSO are tuned using response surface methodology (RSM). In addition, data envelopment analysis (DEA) is employed to find efficient solutions among all near-optimum solutions found by MOPSO. Finally, a sensitivity analysis based on the principal parameters of the cost function is applied to evaluate the impacts of changes on the main parameters. The results show that the proposed model is robust on some parameters such as the cost of detecting and repairing an assignable cause, variable cost of sampling, and fixed cost of sampling.","PeriodicalId":36956,"journal":{"name":"Journal of Optimization in Industrial Engineering","volume":"13 1","pages":"99-112"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Efficient Economic-Statistical Design of Simple Linear Profiles Using a Hybrid Approach of Data Envelopment Analysis, Taguchi Loss Function, and MOPSO\",\"authors\":\"Maryam Fazelimoghadam, M. Ershadi, S. T. A. Niaki\",\"doi\":\"10.22094/JOIE.2019.580054.1607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistically constrained economic design for profiles usually refers to the selection of some parameters such as the sample size, sampling interval, smoothing constant, and control limit for minimizing the total implementation cost while the designed profiles demonstrate a proper statistical performance. In this paper, the Lorenzen-Vance function is first used to model the implementation costs. Then, this function is extended by the Taguchi loss function to involve intangible costs. Next, a multi-objective particle swarm optimization (MOPSO) method is employed to optimize the extended model. The parameters of the MOPSO are tuned using response surface methodology (RSM). In addition, data envelopment analysis (DEA) is employed to find efficient solutions among all near-optimum solutions found by MOPSO. Finally, a sensitivity analysis based on the principal parameters of the cost function is applied to evaluate the impacts of changes on the main parameters. The results show that the proposed model is robust on some parameters such as the cost of detecting and repairing an assignable cause, variable cost of sampling, and fixed cost of sampling.\",\"PeriodicalId\":36956,\"journal\":{\"name\":\"Journal of Optimization in Industrial Engineering\",\"volume\":\"13 1\",\"pages\":\"99-112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optimization in Industrial Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22094/JOIE.2019.580054.1607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization in Industrial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22094/JOIE.2019.580054.1607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

轮廓线的统计约束经济设计通常是指在轮廓线具有适当的统计性能的情况下,选择样本量、采样间隔、平滑常数和控制极限等参数,使总实施成本最小。本文首先采用Lorenzen-Vance函数对实施成本进行建模。然后,这个函数被田口损失函数扩展到包含无形成本。其次,采用多目标粒子群算法对扩展模型进行优化。采用响应面法(RSM)对MOPSO的参数进行了调优。此外,采用数据包络分析(DEA)从MOPSO找到的所有近最优解中寻找有效解。最后,采用基于成本函数主参数的敏感性分析,评价了主参数变化对成本函数的影响。结果表明,该模型对可分配原因的检测和修复成本、可变采样成本和固定采样成本等参数具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Economic-Statistical Design of Simple Linear Profiles Using a Hybrid Approach of Data Envelopment Analysis, Taguchi Loss Function, and MOPSO
Statistically constrained economic design for profiles usually refers to the selection of some parameters such as the sample size, sampling interval, smoothing constant, and control limit for minimizing the total implementation cost while the designed profiles demonstrate a proper statistical performance. In this paper, the Lorenzen-Vance function is first used to model the implementation costs. Then, this function is extended by the Taguchi loss function to involve intangible costs. Next, a multi-objective particle swarm optimization (MOPSO) method is employed to optimize the extended model. The parameters of the MOPSO are tuned using response surface methodology (RSM). In addition, data envelopment analysis (DEA) is employed to find efficient solutions among all near-optimum solutions found by MOPSO. Finally, a sensitivity analysis based on the principal parameters of the cost function is applied to evaluate the impacts of changes on the main parameters. The results show that the proposed model is robust on some parameters such as the cost of detecting and repairing an assignable cause, variable cost of sampling, and fixed cost of sampling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Optimization in Industrial Engineering
Journal of Optimization in Industrial Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
2.90
自引率
0.00%
发文量
0
审稿时长
32 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信