一类拟变量网格高分辨率紧凑算子格式的Burger - huxley和Burger - fisher方程

IF 0.4 Q4 MATHEMATICS, APPLIED
Navnit Jha, Madhav Wagley
{"title":"一类拟变量网格高分辨率紧凑算子格式的Burger - huxley和Burger - fisher方程","authors":"Navnit Jha, Madhav Wagley","doi":"10.5206/mase/10837","DOIUrl":null,"url":null,"abstract":"We describe a quasi-variable meshes implicit compact finite-difference discretization having an accuracy of order four in the spatial direction and second-order in the temporal direction for obtaining numerical solution values of generalized Burger’s-Huxley and Burger’s-Fisher equations. The new difference scheme is derived for a general one-dimension quasi-linear parabolic partial differential equation on a quasi-variable meshes network to the extent that the magnitude of local truncation error of the high-order compact scheme remains unchanged in case of uniform meshes network. Practically, quasi-variable meshes high-order compact schemes yield more precise solution compared with uniform meshes high-order schemes of the same magnitude. A detailed exposition of the new scheme has been introduced and discussed the Fourier analysis based stability theory. The computational results with generalized Burger’s-Huxley equation and Burger’s-Fisher equation are obtained using quasi-variable meshes high-order compact scheme and compared with a numerical solution using uniform meshes high-order schemes to demonstrate capability and accuracy.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A family of quasi-variable meshes high-resolution compact operator scheme for Burger's-Huxley, and Burger's-Fisher equation\",\"authors\":\"Navnit Jha, Madhav Wagley\",\"doi\":\"10.5206/mase/10837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a quasi-variable meshes implicit compact finite-difference discretization having an accuracy of order four in the spatial direction and second-order in the temporal direction for obtaining numerical solution values of generalized Burger’s-Huxley and Burger’s-Fisher equations. The new difference scheme is derived for a general one-dimension quasi-linear parabolic partial differential equation on a quasi-variable meshes network to the extent that the magnitude of local truncation error of the high-order compact scheme remains unchanged in case of uniform meshes network. Practically, quasi-variable meshes high-order compact schemes yield more precise solution compared with uniform meshes high-order schemes of the same magnitude. A detailed exposition of the new scheme has been introduced and discussed the Fourier analysis based stability theory. The computational results with generalized Burger’s-Huxley equation and Burger’s-Fisher equation are obtained using quasi-variable meshes high-order compact scheme and compared with a numerical solution using uniform meshes high-order schemes to demonstrate capability and accuracy.\",\"PeriodicalId\":93797,\"journal\":{\"name\":\"Mathematics in applied sciences and engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in applied sciences and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5206/mase/10837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/10837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

我们描述了一种准变网格隐式紧致有限差分离散化,该离散化在空间方向上具有四阶精度,在时间方向上具有二阶精度,用于获得广义Burger’s-Huxley和Burger’s Fisher方程的数值解值。对于拟变网格网络上的一般一维拟线性抛物型偏微分方程,在均匀网格网络情况下,高阶紧致格式的局部截断误差大小不变的情况下,导出了新的差分格式。在实际应用中,与同等大小的均匀网格高阶格式相比,准变网格高阶紧致格式能得到更精确的解。对新方案进行了详细的阐述,并讨论了基于傅立叶分析的稳定性理论。利用拟变网格高阶紧致格式得到了广义Burger’s Huxley方程和Burger’s-Fisher方程的计算结果,并与均匀网格高阶格式的数值解进行了比较,以证明其计算能力和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A family of quasi-variable meshes high-resolution compact operator scheme for Burger's-Huxley, and Burger's-Fisher equation
We describe a quasi-variable meshes implicit compact finite-difference discretization having an accuracy of order four in the spatial direction and second-order in the temporal direction for obtaining numerical solution values of generalized Burger’s-Huxley and Burger’s-Fisher equations. The new difference scheme is derived for a general one-dimension quasi-linear parabolic partial differential equation on a quasi-variable meshes network to the extent that the magnitude of local truncation error of the high-order compact scheme remains unchanged in case of uniform meshes network. Practically, quasi-variable meshes high-order compact schemes yield more precise solution compared with uniform meshes high-order schemes of the same magnitude. A detailed exposition of the new scheme has been introduced and discussed the Fourier analysis based stability theory. The computational results with generalized Burger’s-Huxley equation and Burger’s-Fisher equation are obtained using quasi-variable meshes high-order compact scheme and compared with a numerical solution using uniform meshes high-order schemes to demonstrate capability and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信