优化强制,阻尼和圆形弹簧-质量系统的弹簧常数-离散和周期双拉普拉斯算子的表征

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
L L A de Oliveira;M V Travaglia
{"title":"优化强制,阻尼和圆形弹簧-质量系统的弹簧常数-离散和周期双拉普拉斯算子的表征","authors":"L L A de Oliveira;M V Travaglia","doi":"10.1093/imamat/hxab021","DOIUrl":null,"url":null,"abstract":"We optimize the spring constants \n<tex>$k^{i,j}$</tex>\n (stiffness) of circular spring-mass systems with nearest-neighbour (NN) and next-nearest-neighbour (NNN) springs only. In this optimization problem, such systems are also subjected to damping and periodic external forces. The function to be minimized is the average ratio of the square norm of the on-site internal forces (response) to the square norm of the external on-site forces (input). Under the average of this response/input ratio is meant the average over time and over all configurations of external forces. As main result, it is established that the optimum stiffness matrix converges to the discrete and periodic bi-Laplacian operator as the size \n<tex>$n$</tex>\n of the system increases. Such a result is obtained under the following assumptions: (a) the system has the natural mode shape (eigenvector) of alternating \n<tex>$1$</tex>\ns and \n<tex>$-1$</tex>\ns; and (b) the (external) forcing frequency is at least \n<tex>$1.095$</tex>\n times higher than the highest natural frequency. It is remarkable that this optimum stiffness matrix exhibits negative stiffness for the springs linking NNN point masses. More specifically, as \n<tex>$n$</tex>\n increases, \n<tex>$0&gt; k^{i,i+2} \\, \\, = \\, \\, - \\tfrac{1}{4} \\, k^{i,i+1}$</tex>\n is the relation between the optimum NNN spring constant and the optimum NN spring constant. Such systems illustrate that the introduction of negative stiffness springs in some specific positions does in fact reduce the average response/input ratio. Numerical tables illustrating the main result are given.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the spring constants of forced, damped and circular spring-mass systems—characterization of the discrete and periodic bi-Laplacian operator\",\"authors\":\"L L A de Oliveira;M V Travaglia\",\"doi\":\"10.1093/imamat/hxab021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We optimize the spring constants \\n<tex>$k^{i,j}$</tex>\\n (stiffness) of circular spring-mass systems with nearest-neighbour (NN) and next-nearest-neighbour (NNN) springs only. In this optimization problem, such systems are also subjected to damping and periodic external forces. The function to be minimized is the average ratio of the square norm of the on-site internal forces (response) to the square norm of the external on-site forces (input). Under the average of this response/input ratio is meant the average over time and over all configurations of external forces. As main result, it is established that the optimum stiffness matrix converges to the discrete and periodic bi-Laplacian operator as the size \\n<tex>$n$</tex>\\n of the system increases. Such a result is obtained under the following assumptions: (a) the system has the natural mode shape (eigenvector) of alternating \\n<tex>$1$</tex>\\ns and \\n<tex>$-1$</tex>\\ns; and (b) the (external) forcing frequency is at least \\n<tex>$1.095$</tex>\\n times higher than the highest natural frequency. It is remarkable that this optimum stiffness matrix exhibits negative stiffness for the springs linking NNN point masses. More specifically, as \\n<tex>$n$</tex>\\n increases, \\n<tex>$0&gt; k^{i,i+2} \\\\, \\\\, = \\\\, \\\\, - \\\\tfrac{1}{4} \\\\, k^{i,i+1}$</tex>\\n is the relation between the optimum NNN spring constant and the optimum NN spring constant. Such systems illustrate that the introduction of negative stiffness springs in some specific positions does in fact reduce the average response/input ratio. Numerical tables illustrating the main result are given.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9514759/\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9514759/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们优化了仅具有最近邻(NN)和次近邻(NNN)弹簧的圆形弹簧-质量系统的弹簧常数$k^{i,j}$(刚度)。在此优化问题中,系统还受到阻尼和周期性外力的影响。要最小化的函数是现场内力(响应)的平方范数与现场外力(输入)的平方范数的平均比值。在这个响应/输入比的平均值下,意味着随时间和所有外力配置的平均值。研究结果表明,随着系统规模的增大,最优刚度矩阵收敛于离散周期双拉普拉斯算子。该结果是在以下假设下得到的:(a)系统具有$1$s和$-1$s交替的自然模态振型(特征向量);(b)(外部)强迫频率至少比最高固有频率高1.095美元。值得注意的是,该最优刚度矩阵对于连接NNN点质量的弹簧呈现负刚度。更具体地说,随着$n$的增加,$0> k^{i,i+2} \, \, = \, \, - \ trfrac {1}{4} \, k^{i,i+1}$是最优NNN弹簧常数与最优NN弹簧常数之间的关系。这些系统表明,在某些特定位置引入负刚度弹簧确实降低了平均响应/输入比。给出了主要结果的数值表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing the spring constants of forced, damped and circular spring-mass systems—characterization of the discrete and periodic bi-Laplacian operator
We optimize the spring constants $k^{i,j}$ (stiffness) of circular spring-mass systems with nearest-neighbour (NN) and next-nearest-neighbour (NNN) springs only. In this optimization problem, such systems are also subjected to damping and periodic external forces. The function to be minimized is the average ratio of the square norm of the on-site internal forces (response) to the square norm of the external on-site forces (input). Under the average of this response/input ratio is meant the average over time and over all configurations of external forces. As main result, it is established that the optimum stiffness matrix converges to the discrete and periodic bi-Laplacian operator as the size $n$ of the system increases. Such a result is obtained under the following assumptions: (a) the system has the natural mode shape (eigenvector) of alternating $1$ s and $-1$ s; and (b) the (external) forcing frequency is at least $1.095$ times higher than the highest natural frequency. It is remarkable that this optimum stiffness matrix exhibits negative stiffness for the springs linking NNN point masses. More specifically, as $n$ increases, $0> k^{i,i+2} \, \, = \, \, - \tfrac{1}{4} \, k^{i,i+1}$ is the relation between the optimum NNN spring constant and the optimum NN spring constant. Such systems illustrate that the introduction of negative stiffness springs in some specific positions does in fact reduce the average response/input ratio. Numerical tables illustrating the main result are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信