关于一些$p$进周期域的结构

IF 1.8 2区 数学 Q1 MATHEMATICS
Miaofen Chen, Laurent Fargues, Xu Shen
{"title":"关于一些$p$进周期域的结构","authors":"Miaofen Chen, Laurent Fargues, Xu Shen","doi":"10.4310/cjm.2021.v9.n1.a4","DOIUrl":null,"url":null,"abstract":"We prove the Fargues-Rapoport conjecture for p-adic period domains: for a reductive group G over a p-adic field and a minuscule cocharacter {\\mu} of G, the weakly admissible locus coincides with the admissible one if and only if the Kottwitz set B(G,{\\mu}) is fully Hodge-Newton decomposable.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2017-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"On the structure of some $p$-adic period domains\",\"authors\":\"Miaofen Chen, Laurent Fargues, Xu Shen\",\"doi\":\"10.4310/cjm.2021.v9.n1.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the Fargues-Rapoport conjecture for p-adic period domains: for a reductive group G over a p-adic field and a minuscule cocharacter {\\\\mu} of G, the weakly admissible locus coincides with the admissible one if and only if the Kottwitz set B(G,{\\\\mu}) is fully Hodge-Newton decomposable.\",\"PeriodicalId\":48573,\"journal\":{\"name\":\"Cambridge Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2017-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cambridge Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cjm.2021.v9.n1.a4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2021.v9.n1.a4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 24

摘要

我们证明了p进周期域上的fargue - rapoport猜想:对于p进域上的约化群G和G的极小协元{\mu},当且仅当Kottwitz集B(G,{\mu})完全可霍奇-牛顿分解时,弱可容许轨迹与可容许轨迹重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the structure of some $p$-adic period domains
We prove the Fargues-Rapoport conjecture for p-adic period domains: for a reductive group G over a p-adic field and a minuscule cocharacter {\mu} of G, the weakly admissible locus coincides with the admissible one if and only if the Kottwitz set B(G,{\mu}) is fully Hodge-Newton decomposable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信