Natalia Coneo, Yulieth Ramos, Gezira De Ávila, A. Herrera, A. Cremades
{"title":"氧化锌纳米粒子增强活性壳聚糖-聚乙烯醇薄膜在食品包装中的应用","authors":"Natalia Coneo, Yulieth Ramos, Gezira De Ávila, A. Herrera, A. Cremades","doi":"10.1177/20412479231174442","DOIUrl":null,"url":null,"abstract":"Active packaging represents an innovative alternative to improve the quality of food and extend the shelf life of the product. The main aim of this research is to develop antibacterial films based on chitosan (Cs), polyvinyl alcohol (PVA), and zinc oxide nanoparticles (ZnONps) to find a solution of food deterioration due to the presence of pathogenic microorganisms. ZnONps were synthesized by green chemistry using the leaves extract of Petroselinum crispum. The films were fabricated with 0; 0.5; and 1% w/v of ZnONps using different proportions of Cs: PVA by the casting method. The mechanical, physicochemical, antimicrobial, and antifungal properties were assessed. Moreover, the influence of the Cs/PVA/ZnONps films in the conservation of the Isabella grape was analyzed (pH, titratable acidity, weight loss, total soluble solids, and decay rate) and it was compared to commercial coating and uncoated grapes. Results showed the increase in the content of PVA improved the mechanical properties and increased the water absorption. Besides, Young’s Module, and tensile strength of the films improved with ZnO nanoparticles addition. The antimicrobial activity of the nanocomposite films against Escherichia Coli was demonstrated. Finally, it was corroborated the nanocomposite films preserve the quality and extend the shelf life of Isabella grapes 6 days more than the commercial coating affirming their use in food packaging. To the best of our knowledge, no previous work related with the development of films based on Cs/PVA reinforced with ZnONPs has tested its application as fruits packaging, determining its effect on the ripening process through physic-chemical assays. Graphical Abstract","PeriodicalId":20353,"journal":{"name":"Polymers from Renewable Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Active chitosan- poly (vinyl alcohol) film reinforced with zinc oxide nanoparticles for food packaging applications\",\"authors\":\"Natalia Coneo, Yulieth Ramos, Gezira De Ávila, A. Herrera, A. Cremades\",\"doi\":\"10.1177/20412479231174442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active packaging represents an innovative alternative to improve the quality of food and extend the shelf life of the product. The main aim of this research is to develop antibacterial films based on chitosan (Cs), polyvinyl alcohol (PVA), and zinc oxide nanoparticles (ZnONps) to find a solution of food deterioration due to the presence of pathogenic microorganisms. ZnONps were synthesized by green chemistry using the leaves extract of Petroselinum crispum. The films were fabricated with 0; 0.5; and 1% w/v of ZnONps using different proportions of Cs: PVA by the casting method. The mechanical, physicochemical, antimicrobial, and antifungal properties were assessed. Moreover, the influence of the Cs/PVA/ZnONps films in the conservation of the Isabella grape was analyzed (pH, titratable acidity, weight loss, total soluble solids, and decay rate) and it was compared to commercial coating and uncoated grapes. Results showed the increase in the content of PVA improved the mechanical properties and increased the water absorption. Besides, Young’s Module, and tensile strength of the films improved with ZnO nanoparticles addition. The antimicrobial activity of the nanocomposite films against Escherichia Coli was demonstrated. Finally, it was corroborated the nanocomposite films preserve the quality and extend the shelf life of Isabella grapes 6 days more than the commercial coating affirming their use in food packaging. To the best of our knowledge, no previous work related with the development of films based on Cs/PVA reinforced with ZnONPs has tested its application as fruits packaging, determining its effect on the ripening process through physic-chemical assays. Graphical Abstract\",\"PeriodicalId\":20353,\"journal\":{\"name\":\"Polymers from Renewable Resources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers from Renewable Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/20412479231174442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers from Renewable Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20412479231174442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Active chitosan- poly (vinyl alcohol) film reinforced with zinc oxide nanoparticles for food packaging applications
Active packaging represents an innovative alternative to improve the quality of food and extend the shelf life of the product. The main aim of this research is to develop antibacterial films based on chitosan (Cs), polyvinyl alcohol (PVA), and zinc oxide nanoparticles (ZnONps) to find a solution of food deterioration due to the presence of pathogenic microorganisms. ZnONps were synthesized by green chemistry using the leaves extract of Petroselinum crispum. The films were fabricated with 0; 0.5; and 1% w/v of ZnONps using different proportions of Cs: PVA by the casting method. The mechanical, physicochemical, antimicrobial, and antifungal properties were assessed. Moreover, the influence of the Cs/PVA/ZnONps films in the conservation of the Isabella grape was analyzed (pH, titratable acidity, weight loss, total soluble solids, and decay rate) and it was compared to commercial coating and uncoated grapes. Results showed the increase in the content of PVA improved the mechanical properties and increased the water absorption. Besides, Young’s Module, and tensile strength of the films improved with ZnO nanoparticles addition. The antimicrobial activity of the nanocomposite films against Escherichia Coli was demonstrated. Finally, it was corroborated the nanocomposite films preserve the quality and extend the shelf life of Isabella grapes 6 days more than the commercial coating affirming their use in food packaging. To the best of our knowledge, no previous work related with the development of films based on Cs/PVA reinforced with ZnONPs has tested its application as fruits packaging, determining its effect on the ripening process through physic-chemical assays. Graphical Abstract
期刊介绍:
Polymers from Renewable Resources, launched in 2010, publishes leading peer reviewed research that is focused on the development of renewable polymers and their application in the production of industrial, consumer, and medical products. The progressive decline of fossil resources, together with the ongoing increases in oil prices, has initiated an increase in the search for alternatives based on renewable resources for the production of energy. The prevalence of petroleum and carbon based chemistry for the production of organic chemical goods has generated a variety of initiatives aimed at replacing fossil sources with renewable counterparts. In particular, major efforts are being conducted in polymer science and technology to prepare macromolecular materials based on renewable resources. Also gaining momentum is the utilisation of vegetable biomass either by the separation of its components and their development or after suitable chemical modification. This journal is a valuable addition to academic, research and industrial libraries, research institutions dealing with the use of natural resources and materials science and industrial laboratories concerned with polymer science.