{"title":"二维闭流形上的简化Bardina方程","authors":"Pham Truong Xuan","doi":"10.4310/DPDE.2021.v18.n4.a3","DOIUrl":null,"url":null,"abstract":"This paper we study the viscous simplified Bardina equations on two-dimensional closed manifolds $M$ imbedded in $\\mathbb{R}^3$. First we will show that the existence and uniqueness of the weak solutions. Then the existence of a maximal attractor is proved and the upper bound for the global Hausdorff and fractal dimensions of the attractor is obtained. The applications to the two-dimensional sphere ${S}^2$ and the square torus ${T}^2$ will be treated. Finally, we prove the existence of the inertial manifolds in the case ${S}^2$.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The simplified Bardina equation on two-dimensional closed manifolds\",\"authors\":\"Pham Truong Xuan\",\"doi\":\"10.4310/DPDE.2021.v18.n4.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper we study the viscous simplified Bardina equations on two-dimensional closed manifolds $M$ imbedded in $\\\\mathbb{R}^3$. First we will show that the existence and uniqueness of the weak solutions. Then the existence of a maximal attractor is proved and the upper bound for the global Hausdorff and fractal dimensions of the attractor is obtained. The applications to the two-dimensional sphere ${S}^2$ and the square torus ${T}^2$ will be treated. Finally, we prove the existence of the inertial manifolds in the case ${S}^2$.\",\"PeriodicalId\":50562,\"journal\":{\"name\":\"Dynamics of Partial Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/DPDE.2021.v18.n4.a3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/DPDE.2021.v18.n4.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The simplified Bardina equation on two-dimensional closed manifolds
This paper we study the viscous simplified Bardina equations on two-dimensional closed manifolds $M$ imbedded in $\mathbb{R}^3$. First we will show that the existence and uniqueness of the weak solutions. Then the existence of a maximal attractor is proved and the upper bound for the global Hausdorff and fractal dimensions of the attractor is obtained. The applications to the two-dimensional sphere ${S}^2$ and the square torus ${T}^2$ will be treated. Finally, we prove the existence of the inertial manifolds in the case ${S}^2$.
期刊介绍:
Publishes novel results in the areas of partial differential equations and dynamical systems in general, with priority given to dynamical system theory or dynamical aspects of partial differential equations.