二维闭流形上的简化Bardina方程

IF 1.1 3区 数学 Q2 MATHEMATICS, APPLIED
Pham Truong Xuan
{"title":"二维闭流形上的简化Bardina方程","authors":"Pham Truong Xuan","doi":"10.4310/DPDE.2021.v18.n4.a3","DOIUrl":null,"url":null,"abstract":"This paper we study the viscous simplified Bardina equations on two-dimensional closed manifolds $M$ imbedded in $\\mathbb{R}^3$. First we will show that the existence and uniqueness of the weak solutions. Then the existence of a maximal attractor is proved and the upper bound for the global Hausdorff and fractal dimensions of the attractor is obtained. The applications to the two-dimensional sphere ${S}^2$ and the square torus ${T}^2$ will be treated. Finally, we prove the existence of the inertial manifolds in the case ${S}^2$.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The simplified Bardina equation on two-dimensional closed manifolds\",\"authors\":\"Pham Truong Xuan\",\"doi\":\"10.4310/DPDE.2021.v18.n4.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper we study the viscous simplified Bardina equations on two-dimensional closed manifolds $M$ imbedded in $\\\\mathbb{R}^3$. First we will show that the existence and uniqueness of the weak solutions. Then the existence of a maximal attractor is proved and the upper bound for the global Hausdorff and fractal dimensions of the attractor is obtained. The applications to the two-dimensional sphere ${S}^2$ and the square torus ${T}^2$ will be treated. Finally, we prove the existence of the inertial manifolds in the case ${S}^2$.\",\"PeriodicalId\":50562,\"journal\":{\"name\":\"Dynamics of Partial Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/DPDE.2021.v18.n4.a3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/DPDE.2021.v18.n4.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了嵌入在$\mathbb{R}^3$中的二维闭流形$M$上的粘性简化Bardina方程。首先我们将证明弱解的存在唯一性。然后证明了极大吸引子的存在性,得到了该吸引子的全局Hausdorff维数和分形维数的上界。将讨论二维球面${S}^2$和方形环面${T}^2$的应用。最后,我们证明了${S}^2$情况下惯性流形的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The simplified Bardina equation on two-dimensional closed manifolds
This paper we study the viscous simplified Bardina equations on two-dimensional closed manifolds $M$ imbedded in $\mathbb{R}^3$. First we will show that the existence and uniqueness of the weak solutions. Then the existence of a maximal attractor is proved and the upper bound for the global Hausdorff and fractal dimensions of the attractor is obtained. The applications to the two-dimensional sphere ${S}^2$ and the square torus ${T}^2$ will be treated. Finally, we prove the existence of the inertial manifolds in the case ${S}^2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishes novel results in the areas of partial differential equations and dynamical systems in general, with priority given to dynamical system theory or dynamical aspects of partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信