离散魔毯上的几何和拉普拉斯

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
E. Goodman, Chunyin Siu, R. Strichartz
{"title":"离散魔毯上的几何和拉普拉斯","authors":"E. Goodman, Chunyin Siu, R. Strichartz","doi":"10.4171/jfg/129","DOIUrl":null,"url":null,"abstract":"We study several variants of the classical Sierpinski Carpet (SC) fractal. The main examples we call infinite magic carpets (IMC), obtained by taking an infinite blowup of a discrete graph approximation to SC and identifying edges using torus, Klein bottle or projective plane type identifications. We use both theoretical and experimental methods. We prove estimates for the size of metric balls that are close to optimal. We obtain numerical approximations to the spectrum of the graph Laplacian on IMC and to solutions of the associated differential equations: Laplace equation, heat equation and wave equation. We present evidence that the random walk on IMC is transient, and that the full spectral resolution of the Laplacian on IMC involves only continuous spectrum. This paper is a contribution to a general program of eliminating unwanted boundaries in the theory of analysis on fractals.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry and Laplacian on discrete magic carpets\",\"authors\":\"E. Goodman, Chunyin Siu, R. Strichartz\",\"doi\":\"10.4171/jfg/129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study several variants of the classical Sierpinski Carpet (SC) fractal. The main examples we call infinite magic carpets (IMC), obtained by taking an infinite blowup of a discrete graph approximation to SC and identifying edges using torus, Klein bottle or projective plane type identifications. We use both theoretical and experimental methods. We prove estimates for the size of metric balls that are close to optimal. We obtain numerical approximations to the spectrum of the graph Laplacian on IMC and to solutions of the associated differential equations: Laplace equation, heat equation and wave equation. We present evidence that the random walk on IMC is transient, and that the full spectral resolution of the Laplacian on IMC involves only continuous spectrum. This paper is a contribution to a general program of eliminating unwanted boundaries in the theory of analysis on fractals.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2019-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jfg/129\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/129","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了经典Sierpinski地毯(SC)分形的几种变体。我们称之为无限魔毯(IMC)的主要例子,是通过对SC进行离散图近似的无限放大,并使用环面、克莱因瓶或投影平面类型识别来识别边而获得的。我们使用理论和实验两种方法。我们证明了对公制球大小的估计接近最优。我们获得了图拉普拉斯在IMC上的谱以及相关微分方程(拉普拉斯方程、热方程和波动方程)的解的数值近似。我们提出的证据表明,在IMC上的随机行走是瞬态的,并且拉普拉斯算子在IMC的全谱分辨率仅涉及连续谱。本文是对分形分析理论中消除无用边界的通用程序的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometry and Laplacian on discrete magic carpets
We study several variants of the classical Sierpinski Carpet (SC) fractal. The main examples we call infinite magic carpets (IMC), obtained by taking an infinite blowup of a discrete graph approximation to SC and identifying edges using torus, Klein bottle or projective plane type identifications. We use both theoretical and experimental methods. We prove estimates for the size of metric balls that are close to optimal. We obtain numerical approximations to the spectrum of the graph Laplacian on IMC and to solutions of the associated differential equations: Laplace equation, heat equation and wave equation. We present evidence that the random walk on IMC is transient, and that the full spectral resolution of the Laplacian on IMC involves only continuous spectrum. This paper is a contribution to a general program of eliminating unwanted boundaries in the theory of analysis on fractals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信