具有最终超定项的二维和三维对流Brinkman-Forchheimer方程反问题的适定性

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Pardeep Kumar, M. T. Mohan
{"title":"具有最终超定项的二维和三维对流Brinkman-Forchheimer方程反问题的适定性","authors":"Pardeep Kumar, M. T. Mohan","doi":"10.3934/ipi.2022024","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this article, we study an inverse problem for the following convective Brinkman-Forchheimer (CBF) equations:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\begin{align*} \\boldsymbol{u}_t-\\mu \\Delta\\boldsymbol{u}+(\\boldsymbol{u}\\cdot\\nabla)\\boldsymbol{u}+\\alpha\\boldsymbol{u}+\\beta|\\boldsymbol{u}|^{r-1}\\boldsymbol{u}+\\nabla p = \\boldsymbol{F}: = \\boldsymbol{f} g, \\ \\ \\ \\nabla\\cdot\\boldsymbol{u} = 0, \\end{align*} $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>in bounded domains <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\Omega\\subset\\mathbb{R}^d $\\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id=\"M2\">\\begin{document}$ d = 2, 3 $\\end{document}</tex-math></inline-formula>) with smooth boundary, where <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\alpha, \\beta, \\mu>0 $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M4\">\\begin{document}$ r\\in[1, \\infty) $\\end{document}</tex-math></inline-formula>. The CBF equations describe the motion of incompressible fluid flows in a saturated porous medium. The inverse problem under our consideration consists of reconstructing the vector-valued velocity function <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\boldsymbol{u} $\\end{document}</tex-math></inline-formula>, the pressure gradient <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\nabla p $\\end{document}</tex-math></inline-formula> and the vector-valued function <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\boldsymbol{f} $\\end{document}</tex-math></inline-formula>. We prove the well-posedness result (existence, uniqueness and stability) of an inverse problem for 2D and 3D CBF equations with the final overdetermination condition using Schauder's fixed point theorem for arbitrary smooth initial data. The well-posedness results hold for <inline-formula><tex-math id=\"M8\">\\begin{document}$ r\\geq 1 $\\end{document}</tex-math></inline-formula> in two dimensions and for <inline-formula><tex-math id=\"M9\">\\begin{document}$ r \\geq 3 $\\end{document}</tex-math></inline-formula> in three dimensions. The global solvability results available in the literature helped us to obtain the uniqueness and stability results for the model with fast growing nonlinearities.</p>","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Well-posedness of an inverse problem for two- and three-dimensional convective Brinkman-Forchheimer equations with the final overdetermination\",\"authors\":\"Pardeep Kumar, M. T. Mohan\",\"doi\":\"10.3934/ipi.2022024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this article, we study an inverse problem for the following convective Brinkman-Forchheimer (CBF) equations:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\begin{align*} \\\\boldsymbol{u}_t-\\\\mu \\\\Delta\\\\boldsymbol{u}+(\\\\boldsymbol{u}\\\\cdot\\\\nabla)\\\\boldsymbol{u}+\\\\alpha\\\\boldsymbol{u}+\\\\beta|\\\\boldsymbol{u}|^{r-1}\\\\boldsymbol{u}+\\\\nabla p = \\\\boldsymbol{F}: = \\\\boldsymbol{f} g, \\\\ \\\\ \\\\ \\\\nabla\\\\cdot\\\\boldsymbol{u} = 0, \\\\end{align*} $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>in bounded domains <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\Omega\\\\subset\\\\mathbb{R}^d $\\\\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ d = 2, 3 $\\\\end{document}</tex-math></inline-formula>) with smooth boundary, where <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\alpha, \\\\beta, \\\\mu>0 $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ r\\\\in[1, \\\\infty) $\\\\end{document}</tex-math></inline-formula>. The CBF equations describe the motion of incompressible fluid flows in a saturated porous medium. The inverse problem under our consideration consists of reconstructing the vector-valued velocity function <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ \\\\boldsymbol{u} $\\\\end{document}</tex-math></inline-formula>, the pressure gradient <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ \\\\nabla p $\\\\end{document}</tex-math></inline-formula> and the vector-valued function <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ \\\\boldsymbol{f} $\\\\end{document}</tex-math></inline-formula>. We prove the well-posedness result (existence, uniqueness and stability) of an inverse problem for 2D and 3D CBF equations with the final overdetermination condition using Schauder's fixed point theorem for arbitrary smooth initial data. The well-posedness results hold for <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ r\\\\geq 1 $\\\\end{document}</tex-math></inline-formula> in two dimensions and for <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ r \\\\geq 3 $\\\\end{document}</tex-math></inline-formula> in three dimensions. The global solvability results available in the literature helped us to obtain the uniqueness and stability results for the model with fast growing nonlinearities.</p>\",\"PeriodicalId\":50274,\"journal\":{\"name\":\"Inverse Problems and Imaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems and Imaging\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/ipi.2022024\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2022024","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

在这篇文章中,我们研究了以下对流Brinkman-Forchheimer(CBF)方程的一个反问题:\ begin{document}$\ begin{align*}\boldsymbol{u}_t-\mu\Delta\boldsymbol{u}+2$\end{document})具有平滑边界,其中\ begin{document}$\alpha,\beta,\mu>0$\end{document}和\begin{document}$r\in[1,\infty)$\end}。CBF方程描述了饱和多孔介质中不可压缩流体流动的运动。我们考虑的反问题包括重建矢量值速度函数\begin{document}$\boldsymbol{u}$\end{document},压力梯度\begin}$\nabla p$\end以及向量值函数\ begin{document}$\boldsymbol{f}$\ end{documents}。利用任意光滑初始数据的Schauder不动点定理,证明了具有最终超定条件的二维和三维CBF方程反问题的适定性结果(存在性、唯一性和稳定性)。在二维中,\bbegin{document}$r\geq 1$\end{documents}和在三维中,\bBegin{document}$r\geq 3$\end}的适定性结果成立。文献中可用的全局可解性结果帮助我们获得了具有快速增长非线性的模型的唯一性和稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-posedness of an inverse problem for two- and three-dimensional convective Brinkman-Forchheimer equations with the final overdetermination

In this article, we study an inverse problem for the following convective Brinkman-Forchheimer (CBF) equations:

in bounded domains \begin{document}$ \Omega\subset\mathbb{R}^d $\end{document} (\begin{document}$ d = 2, 3 $\end{document}) with smooth boundary, where \begin{document}$ \alpha, \beta, \mu>0 $\end{document} and \begin{document}$ r\in[1, \infty) $\end{document}. The CBF equations describe the motion of incompressible fluid flows in a saturated porous medium. The inverse problem under our consideration consists of reconstructing the vector-valued velocity function \begin{document}$ \boldsymbol{u} $\end{document}, the pressure gradient \begin{document}$ \nabla p $\end{document} and the vector-valued function \begin{document}$ \boldsymbol{f} $\end{document}. We prove the well-posedness result (existence, uniqueness and stability) of an inverse problem for 2D and 3D CBF equations with the final overdetermination condition using Schauder's fixed point theorem for arbitrary smooth initial data. The well-posedness results hold for \begin{document}$ r\geq 1 $\end{document} in two dimensions and for \begin{document}$ r \geq 3 $\end{document} in three dimensions. The global solvability results available in the literature helped us to obtain the uniqueness and stability results for the model with fast growing nonlinearities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inverse Problems and Imaging
Inverse Problems and Imaging 数学-物理:数学物理
CiteScore
2.50
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing. This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信