利用回归分析关键宏观经济变量对BSE的依赖性

IF 0.2 Q4 ECONOMICS
B. K. Som, Himanshu Goel
{"title":"利用回归分析关键宏观经济变量对BSE的依赖性","authors":"B. K. Som, Himanshu Goel","doi":"10.4018/ijabe.308782","DOIUrl":null,"url":null,"abstract":"This paper aims to analyze the dependence of key macroeconomic variables on Bombay Stock Exchange (BSE) Sensex using regression modelling technique in R-studio. Monthly data points spanning a period of last years from 2012 to 2019 has been used for the empirical investigation. The results of the model indicate that Long Term Interest Rate (LTINT), Consumer Price Index (CPI) and Morgan Stanley Capital International (MSCI) are found to be significant while Index of Industrial Production (IIP) and Foreign Exchange (FX) are insignificant. Also, the value or r-square indicates that 93 percent of the variation in the dependent variable is explained by the selected Independent variables. Also, the dataset was checked for normality and linearity using appropriate graphs. The results of this paper will be of immense use for the investors in predicting the stock price movement.","PeriodicalId":41154,"journal":{"name":"International Journal of Applied Behavioral Economics","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing Dependence of Key Macroeconomic Variables on BSE Using Regression\",\"authors\":\"B. K. Som, Himanshu Goel\",\"doi\":\"10.4018/ijabe.308782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to analyze the dependence of key macroeconomic variables on Bombay Stock Exchange (BSE) Sensex using regression modelling technique in R-studio. Monthly data points spanning a period of last years from 2012 to 2019 has been used for the empirical investigation. The results of the model indicate that Long Term Interest Rate (LTINT), Consumer Price Index (CPI) and Morgan Stanley Capital International (MSCI) are found to be significant while Index of Industrial Production (IIP) and Foreign Exchange (FX) are insignificant. Also, the value or r-square indicates that 93 percent of the variation in the dependent variable is explained by the selected Independent variables. Also, the dataset was checked for normality and linearity using appropriate graphs. The results of this paper will be of immense use for the investors in predicting the stock price movement.\",\"PeriodicalId\":41154,\"journal\":{\"name\":\"International Journal of Applied Behavioral Economics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Behavioral Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijabe.308782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Behavioral Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijabe.308782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在利用R-studio中的回归建模技术分析关键宏观经济变量对孟买证券交易所(BSE) Sensex的依赖性。实证调查使用了2012年至2019年的月度数据点。模型结果表明,长期利率(LTINT)、消费者价格指数(CPI)和摩根士丹利资本国际(MSCI)对我国经济增长的影响显著,而工业生产指数(IIP)和外汇指数(FX)对我国经济增长的影响不显著。此外,r平方值表明因变量中93%的变化是由所选的自变量解释的。此外,使用适当的图形检查数据集的正态性和线性。本文的研究结果对投资者预测股票价格走势具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing Dependence of Key Macroeconomic Variables on BSE Using Regression
This paper aims to analyze the dependence of key macroeconomic variables on Bombay Stock Exchange (BSE) Sensex using regression modelling technique in R-studio. Monthly data points spanning a period of last years from 2012 to 2019 has been used for the empirical investigation. The results of the model indicate that Long Term Interest Rate (LTINT), Consumer Price Index (CPI) and Morgan Stanley Capital International (MSCI) are found to be significant while Index of Industrial Production (IIP) and Foreign Exchange (FX) are insignificant. Also, the value or r-square indicates that 93 percent of the variation in the dependent variable is explained by the selected Independent variables. Also, the dataset was checked for normality and linearity using appropriate graphs. The results of this paper will be of immense use for the investors in predicting the stock price movement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
20.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信